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Overall objectives

Short-term, episodic visual recognition memory is crucial to the success of most
activities of everyday life. The ability to recognize and evaluate recently-seen objects
and events makes it possible to prepare and then execute appropriate actions in a
timely fashion. Because this crucial capacity spans two distinctly different research
traditions, vision and memory, it has received far less research effort than it deserves.
With the interdependence of vision and memory firmly in mind, we are attempting
to synthesize concepts, insights, and methods from memory research, and from vision
research, working within a coherent, quantitative framework for understanding visual
recognition memory, particularly for stimuli that resist rehearsal.

The reporting period covers the period of July 1, 2003 to December 31, 2004.
During this project we made a strong progress on both of our research objectives,
and on some supplementary objectives as well.

Objective One.

Examine episodic visual recognition memory for complex, high-dimensional stim-
uli, that is, synthetic human faces (Wilson, Loffler, & Wilkinson, 2002). Outside the
laboratory, nearly all inputs to memory can only be defined in high-dimensional stim-
ulus spaces. This is true of verbal material (words), natural sounds, and scenes. To
date, recognition memory research supported by this project has focused on simple,
low-dimensional stimuli, that is, 2- or 3-dimensional compound gratings. At issue is
(1) whether NEMo (Kahana & Sekuler, 2002) and/or related models can account for
recognition of more complex stimuli, which have higher dimensionality, (2) whether
the general principles that govern memory for low-dimensional stimuli hold also for
high-dimensional stimuli.

Objective Two

Examine relationship between recognition and identification (that is, source mem-
ory). Guided by our computational model, NEMo, and our prior findings, work in
this objective developed and tested a new paradigm for studying the link between
recognition of particular, previously seen stimuli, and the ability to identify the con-
text in which the stimuli were encountered. Specifically, we collected and modeled
concurrent recognition and identification judgments, applying signal detection and
information theory analyses to the results.

Status of Effort

During the project period we collected substantial amounts of data and carried
out model-driven analyses related to many of the project’s objectives.
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Objective One

Four experiments confirmed that high-dimensional stimuli (synthetic human faces)
can provide useful insights into episodic recognition memory. Our initial data set
replicated some, but not all, basic phenomena found previously with simpler stimuli.
Using an eye-tracker funded primarily by this project, we examined the pattern of
fixations that subjects made while they scrutinized and encoded the face stimuli for
memory. We developed a reliable method for generating similarity judgments, which
can be transformed via multidimensional scaling into a representation of perceptual
distances among faces. A manuscript reporting this work is under review.

Objective Two

Three experiments examined connections between recognition and identifica-
tion, a key attribute of of visual episodic memory. With compound gratings as
study and probe items, subjects judged whether a probe had or had not been
presented in the immediately preceding study series (a recognition judgment), and
also identified the serial position of the study item that matched the probe (an
identification judgment). Recognition and identification responses were expressed
on a visual analogue scale. Approximately 756% of correct recognitions were ac-
companied by correct identification of the serial position of the study item that
matched the probe. The suggests that recognition and identification are based
on a common source of memory information. Misidentifications were attributable
to two factors: perceptual similarity between the wrongly identified study item
and the correct study item, and the temporal proximity of the wrongly identified
item to the correct one. We used receiver operating characteristics (ROCs) to
compare recognition performance across the three experiments. By combining signal
detection theory (Wickens, 2002) and the summed similarity framework embodied
in NEMo, we were able to account for the unusual slopes of our z-transformed ROCs.

Accomplishments/New Findings
Work on Objective One: Recognition Memory for Synthetic Faces.

Like other strongly-social creatures, Homo sapiens have a knack for recognizing
previously-encountered conspecifics. Even a brief glimpse of some face can be enough
to allow a viewer to recognize that the face had been seen before (Lehky, 2000).
Going beyond this simple judgment of familiarity, additional, episodic information
makes it possible to judge the circumstances under which that glimpsed face had
been seen. To examine visual episodic memory for faces we adapted Sternberg’s
paradigm (1966, 1975), which can bridge visual psychophysics and memory, research
domains that bracket visual recognition memory.

Our research is driven by a computational model that has successfully accounted
for episodic memory with low-dimensional stimuli, compound sinusoidal gratings
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that vary in spatial frequency and phase (Kahana & Sekuler, 2002). This model,
NEMo (Noisy Exemplar Model), provides a framework for understanding how briefly-
presented stimuli are represented in memory, and for identifying the way that stored
memories are transformed into recognition judgments. Here, we apply NEMo to
episodic memory for specially-designed human faces. Unlike the case for compound
sinusoidal gratings, essential aspects of visual processing of human faces take place
several synapses beyond the primary visual cortex. Because the primary visual cortex
participates not only in visual encoding but also in visual memory and related phe-
nomena (Magnussen & Greenlee, 1999; Kosslyn, Thompson, Kim, & Alpert, 1995;
Klein, Paradis, Poline, Kosslyn, & Le Bihan, 2000), we were interested in the possi-
bility that differences between visual processing of compound gratings and of human
faces might produce corresponding differences in recognition memory for the two kinds
of stimuli (Hole, 1996).

As readers may be unfamiliar with the class of face stimuli we used, and because
the characteristics of these stimuli are central to our research, it is worthwhile to
describe those stimuli in some detail. Wilson et al. (2002) devised a method for
generating synthetic faces that are ideal stimuli for model-driven research on visual
memory. Individual synthetic faces are derived from gray-scale face photographs by
digitizing 37 key points: 14 points defining head shape, 9 points for the hairline,
4 points for eye locations, 4 points for nose length and width, 5 points defining the
mouth and lips, and one point for brow height. Synthetic faces are then reconstructed
from these 37 measurements and bandpass filtered with a 2.0 octave wide difference
of Gaussians filter with a peak frequency of 10.0 cycles per face width (Wilson et al.,
2002). Several studies have shown that such filtering is optimal for face recognition
(Gold, Bennett, & Sekuler, 1999; Nésénen, 1999).

By design, synthetic faces eliminate textures such as skin, hair, wrinkles, etc, and
focus instead on geometric characteristics of faces. However, this raises the impor-
tant question whether synthetic faces are sufficiently accurate representations of the
original faces to be useful in psychophysical experimentation. This question has been
answered by requiring observers to identify the gray-scale photograph from which a
synthetic face was derived in a four alternative forced choice experiment. The mean
across five observers was 97.4% correct in matching between front view synthetic
faces and photographs, and even for matching between 20 side view photographs and
front view synthetic faces (or vice versa) performance averaged 90.7% correct (Wilson
et al., 2002). As chance performance is 25% in these experiments, these data clearly
demonstrate that synthetic faces capture salient aspects of individual face geometry.
Furthermore, the data base captures known face gender differences: synthetic female
faces have significantly smaller heads, rounder chins, thicker lips, and higher eyebrows
than males. Finally, fMRI signals from the fusiform face area show that synthetic
faces produce BOLD activation that is 85% as large as the original gray scale faces
from which they are derived (manuscript in preparation). Using just 37 measure-
ments strikes a balance between stimulus simplicity and encoding sufficient geometric
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information to characterize individual faces. This essential individuality, which is
important in episodic memory, is absent from some commonly used face stimuli, such
as Brunswik faces (Brunswik & Reiter, 1937; Sigala, Gabbiani, & Logothetis, 2002;
Peters, Gabbiani, & Koch, 2003).

The use of Wilson faces minimizes some problems associated with other collections
of face stimuli (Duchaine & Weidenfeld, 2003). Furthermore, small graded differences
among the faces allowed us to have a variability within individuals, and prevent
subjects from learning and naming each face, which could subvert mnemonic reliance
on visual information (for example, Ashby & Ell, 2001). To reinforce reliance on
visual information per se, we limited rehearsal by giving subjects only a brief glimpse
of each face, and then allowing only a short interval between successive faces.

To preview, our first two experiments establish key properties of visual short-term
memory for synthetic faces. Experiment 1 characterizes the effects on recognition of
serial position, list length, and similarity of the study items to probe. This experiment
also explores memory decay resulting from the sequential occurrence of events, over
and above the influence of similarities among items. Experiment 2 evaluates the effect
of category-membership on recognition memory for synthetic faces, and evaluates
the assumption that perceptual categorical effects are insignificant or absent. In
Experiment 3 we employ a design that allowed us to use the NEMo model of visual
short-term recognition memory to account for performance on individual lists (sets
of stimulus items). The model was applied in several different alternative modes, for
example expressing "similarity” either in terms of faces’ physical coordinates, or in
terms of perceptual coordinates, assessed using multdimensional scaling. Guided by
NEMo, Experiments 3 and 4 allowed us to characterize the roles of (1) the similarity
of probe to the list of study items, (2) the similarities among each of the list items,
and (3) perceptual noise in predicting recognition judgments on individual lists.

Ezxperiment 1

Our first experiment assessed the general suitability of multidimensional, synthetic
face stimuli for use in studies of episodic recognition memory. We wanted to determine
whether, when similar methods were used, findings from memory studies using low
dimensional stimuli, such as compound gratings, could be replicated using higher-
dimensional stimuli whose processing is known to engage regions of the brain that
are not notably involved in processing compound gratings(for example, Kanwisher,
McDermott, & Chun, 1997; Druzgal & D’Esposito, 2001, 2003)

We also empirically estimated the similarity-distance function for synthetic faces.
This tuning function describes the relationship between recognition performance and
pairwise Euclidean distance between faces. We planned to apply this empirically
estimated similarity tuning function in modeling subsequent experiments; the aim
was to reduce the number of free parameters in the model.
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Stimuli The Wilson faces used in all our experiments were derived from pho-
tographs of three Caucasian females whom we designate A, B, and C. From my,
the vector of 37 measurements taken on actual face A, Wilson’s procedure synthe-
sizes a realistic version of that face in a stimulus space of high dimensionality (n = 37).
Vectors of measurements taken on faces A, B and C were transformed so as to be mu-
tually orthogonal, by Gram-Schmidt orthogonalization (Diamantaras & Kung, 1996;
Principle, Euliano, & Lefebvre, 2000). Consequently, variation in one face’s geomet-
ric properties is independent of the variation in geometric properties of the other two
faces (Wilson et al., 2002).

After pre-processing and normalization, vectors of measurements from several
different faces can be combined to generate m,,q, the vector of measurements for
an average face. To illustrate, the synthesized mean female face is shown at the
left of Figure 1. This mean face is derived from a sample of 40 Caucasian female
faces. Summing k(mg,,) and (1 — k)(my), for some k, 0 < k < 1, generates a face
that is a mixture of the mean face and some individual face, A. Allowing k to vary,
k = 0...1, generates a graded series of faces, which spans a continuum from the
mean synthesized face (when k = 1) to a synthesized version of face A alone (when

= 0). The same operation also can generate a graded series of faces, which span
the distance from the mean face toward any other face, here, toward B or C. The
relatively small pairwise distances between faces, together with the orthogonalization
of the face space, make it convenient to manipulate the similarity of one stimulus to
another, a variable known to be important in recognition memory.

The graded series for faces A-C are shown in the upper three rows of Figure 1.
Within each row, (1 — k) ranges from 0.04 to 0.20, in increments of 0.04, which means
that each face differs from its nearest neighbor by approximately the mean discrimi-
nation threshold taken under viewing conditions similar to the ones we used (Wilson
et al., 2002). In geometric terms, faces A-C lie along the mutually-perpendicular axes
of a 3D space, with the mean face at the origin.

A final set of faces, D, was generated by averaging corresponding exemplars of A,
B, and C. The resulting faces are shown in the bottom row of Figure 1. Geometrically,
the faces in row D lie along the diagonal of face space, which means that the geometric
properties of the faces in D are equally well correlated with the geometric properties
of each of the other faces, A, B, and C. Figure 2A shows the geometric arrangement
of all 21 synthetic faces in a space of three-orthogonal dimensions.

To prevent contamination of face recognition by emotional cues, our Wilson-faces
incorporated standard generic shapes for features that would change shape as emo-
tions are expressed, e.g., eyes, mouth and brows (Ekman & Friesen, 1975). In addition
to having a consistent neutral expression, these faces were equated on dimensions such
as contrast and mean luminance, which eliminates such attributes as aids to memory.

Procedure On each trial, one to four faces, the study series, were followed by
a single probe face (p). The faces in the study series comprised the items to be
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Figure 1. Face stimuli used in Experiment 1. Constructed after the method of Wilson
et al. (2002), the stimulus labeled ’mean’ is the average of 40 female faces. In the matrix of
faces, rows A-C shows faces derived from three different faces; row D shows faces that are
the means of faces A-C. Over the matrix columns 1,...,5, faces deviate increasingly from
the mean, by 0.04, in column 1, through 0.20, in column 5. For additional details, see the
text.

remembered for that trial. Subjects judged whether p had been among the items
in the study series. We use the term target to designate a p that had been in the
study series, and the term lure to designate a p that had not been in the study series.
Correspondingly, we can designate any trial as either a target trial or a lure trial.
Because the study series varied from trial to trial, subjects were forced to base each
“yes”-“no” recognition judgment on the items they had just seen.

Each study face was presented for 110 msec, with an inter-stimulus interval of 200
msec. The use of brief presentations was inspired by Wilson et al. (2002)’s use of
this same duration in their studies of face discrimination, and by the fact that fairly
detailed processing of a face can be completed within the first 100 msec of viewing
Lehky (2000).




ROBERT SEKULER, PRINCIPAL INVESTIGATOR

A B
0.2 3 0.2+
- e
4 A
S 4 Cc5
r'y
801 $ 201 0o o
g 24 3 £ 2p 4 *
e 2,85 et
14 "\ — ]
1 i 4 whs .
o 0.2 o 3 0.2
01 07 0.1, 0%
0.1 5 01 &°
Dimens,‘On 1 0.2 0\‘“ Dlmensi()n 1 0.2 0\6\

Figure 2. Representations of face stimuli in alternative three-dimensional spaces. In each
panel, the star indicates the location of the mean face; squares, diamonds, circles, and
triangles represent face A, B, C and D, respectively. The numbers 1-5 designate faces’
distance from the mean; the numbers correspond to the columns in Figure . Panel A.
The 21 face stimuli arranged according to the Euclidean distances between faces’ physical
descriptions, that is the physical distance of each face from the mean. Panel B. Arrangement
of the stimulus faces in a three-dimensional perceptual space, using the MDS solution to
position each face (Expt. 3). The MDS space shown here has been Procrustes transformed
to bring its dimensions into line with those of the space shown in Panel A.

A warning tone followed the study series. Then, 1200 msec later, a p face was
presented for 110 msec. To prevent potential within-category interference, in com-
posing lists of study items only one study face could come from any one category
of face, A...D. For each study list, p was chosen at random from the entire set of
faces, with two constraints. First, on half of all trials, p was forced to replicate one
of the items in the study set (on half of all trials, p differed from all study items).
Second, when p had been among the study items, with equal frequency it matched
each of those items. Prior to the experiment a pool of 7477 unique stimulus series
were randomly generated. Each subject was tested with a unique sample of series
drawn randomly from this large pool of series, subject to constraints of list length and
equal proportions of test and lure trials. Distinctive tones following each response
gave subjects trial-wise knowledge of results.

Although there were small differences in size from face to face, each was ap-
proximately 5.5 degrees high by 3.8 degrees wide. To eliminate the usefulness of
vernier-type cues, the vertical and horizontal position of each face was perturbed by
adding a pair of random displacements drawn from a uniform distribution with mean
= 12.6 minarc, and range = 2.1 - 23.1 minarc.

Subjects served in three, one-hour sessions of 576 trials each. During testing, a

subject sat with head supported by a chin-and-forehead rest, viewing the computer
display binocularly from a distance of 114 cm. Trials were self-initiated.
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Subjects Subjects were five male and five female volunteers whose ages ranged
from 19 to 30 years. They had normal or corrected-to-normal visual acuity as mea-
sured with Snellen targets, and normal contrast sensitivity as measured with Pelli-
Robson charts (Pelli, Robson, & Wilkins, 1988). Subjects were naive with respect to
the study’s purposes.

Apparatus Stimuli were generated and displayed using Matlab and extensions from
the Psychophysics and Video Toolboxes (Brainard, 1997; Pelli, 1997). Stimuli were
presented on a 15-inch computer monitor with a refresh rate of 95 Hz, and a resolution
set to 800 by 600 pixels. Routines from the Video Toolbox calibrated and linearized
the display. Mean screen luminance was fixed at 36 cd/m?.

Results Recognition memory performance is known to be influenced by the length
of the study series and, on target trials, by the serial position of the study item that
matches p (Sternberg, 1975; Murdock, 1982). We therefore examined performance as
a joint function of these two variables. As study series lengthened, overall performance
declined, F(3,27) = 49.57,p < 0.001. The proportion correct responses did not differ
significantly between the two types of trials, targets and lures, F'(1,9) = 5.02,p > .05.

For target trials, as list length varies, the effect of serial position is best understood
by examining performance not as a function serial position per se, but as a function
of lag, the number of study items between p and the study item that it matched (for
example, Kahana & Sekuler, 2002). The data at the left side of Figure 3 show subjects’
mean recognition performance as a function of lag for each study list length, LL=1
- 4. Note that lag=0 signifies that p matched the last study item in the series, that
is, no study items intervened between the two. (Data at the right side of that figure
represent performance on lure trials.) Proportion correct on target trials varies with
lag position, with highest values achieved for lag=0, when the matching study item
appeared at the very end of the series. With one or more study items intervening,
performance declined (lag = 1, 2 or 3). This result constitutes a recency effect.
Note that none of the series lengths showed a primacy effect, that is, an upswing
in performance for the study item presented first. This serial position effect was
consistent with the one reported by Kerr, Ward, and Avons (1999) using gray scale
faces. We conjecture that the absence of any primacy effect resulted from the rapid
presentation of stimuli, which inhibited rehearsal and therefore the appearance of a
primacy effect (Ward, 2002).

Discussion For both target and lure trials, the proportion of correct responses de-
clines as study series increase in length. This list length effect may reflect that as study
lists lengthen, the recency effect becomes diluted, as more, less well-remembered, pre-
ceding items are averaged into the mix. The striking coincidence of the four curves
at the left side of Figure 3 suggests that when target trials are equated for recency,
there is little or no residual list length effect. This outcome is consistent with results
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Figure 3. Recognition performance for target (left side of graph) and lure trials (right side).
For target trials, proportion correct recognition is shown as a function of the lag between
p and the study item that matched p. Curves are shown for study series 1, 2, 3 and 4
items long, with dot size corresponding to list length (larger dot for longer study lists).
The four dots at the right side of the graph show proportion correct for lure trials. Error
bars represent £1 standard error of the mean calculated according to method of Loftus and
Masson (1994).
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on recognition memory for series of 1-4 low-dimensional, compound gratings (Kahana
& Sekuler, 2002).

Figure 3 shows that proportion of correct recognitions on lure trials fell with
increasing numbers of faces in the study set. Before attributing this fall to some
memory-related process, we must consider an alternative possibility. Because our
study lists were generated at random, and because any face could appear just once
in a study series, as series length grew, so too did the probability that one of the
study faces on lure trials would be similar to p. If such similarity promoted false
alarms (saying ”yes” when no study item actually matched p), then that alone could
generate an effect of series length, even in the absence of any degradation in memory
with series length.

To examine this possibility, we reanalyzed those lure trials on which the study
series had just one face. We reasoned that these one-item series would be least affected
by any degradation in memory. These results were then fed into a model we describe
as a Perfect Rememberer, which was then used to predict performance on longer study
series, assuming that memory was perfect, e.g., unaffected by the number of faces in
the study series. This simple model allows us to evaluate similarity’s first-order effects
on recognition memory performance. In addition, the Perfect Rememberer will set the
stage for more detailed quantitative modeling, using NEMo a model to be presented
later. NEMo will be introduced in conjunction with Experiments 3 and 4, which
provided sufficient data to support a model-based analysis of individual lists of study
and p items.

For treatment by the Perfect Rememberer we classified all one-item lure trials
according to the distance between p and the study face. For this purpose, “distance”
was taken as the Euclidean distance between a pair stimuli, i.e., the distances between
faces in Figure 2A. We sorted the trials into bins according to the distance between
the study face and p. Ten bins were generated with equal numbers of lure trials in
each. All target trials were put into one bin for which the distance between p and the
study face was zero. Finally, for each bin of trials we calculated the mean proportion
of trials on which subjects recognized an item as a target. These means, which are
plotted in Figure 4A, were used to predict what a hypothetical Perfect Rememberer
would do when given series 2, 3 or 4 faces long.}

The Perfect Rememberer’s expected responses are based on two simple assump-
tions. First, we assume that increasing the number of study items from the baseline
of one has no effect whatever on memory, that is, there is perfect memory of each
study face seen on a trial, with memory for any one study face being completely
undisturbed by the presentation of other faces. Second, we assume that responses
are determined solely by the one study face that is most similar to p, as defined in

1Because of the pre-probe delay in all study series, including series with just one face, we cannot
say with confidence that the data for that shortest study series were entirely unaffected by decay of
memory during that 1200 msec pre-probe delay. However, any such effect could not account for the
changes in performance with the distance between p and study face, as shown in Figure 4A.
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the space of 2A. With these assumptions, the proportion correct on lure trials can be
obtained from the best-fitting curve shown in Figure 4A.

As this figure shows, the Perfect Rememberer is well described by an exponential
function. This best-fitting exponential was

Pr("yes”) = ae""HPS)” (1)

where (p, s) is the Euclidean distance between the probe and the stimulus face. The
value of ¢ was fixed at one, which produced a simple exponential function. The
best fitting value of a, the y-intercept, was 0.84, and the value for 7, the rate at
which the exponential decreased, was 9.2. These empirically-derived parameter values
closely resembled the values estimated in (Kahana & Sekuler, 2002)’s application of
NEMo to recognition results with simpler, compound grating stimuli. As the Perfect
Rememberer depends upon the relationship between the physical distance and the
corresponding behavioral outcome, this function comprises as a distance-similarity
function. The parameters of the best-fitting exponential distance-similarity function
for the Perfect Remember would be used later in model simulations of results from
Experiment 3. The importation of this empirically-derived function was meant to
reduce the number of free parameters in our modeling.

The gray bars in Figure 4B show the Perfect Rememberer’s expected mean per-
formance on lure trials for study series of length 2, 3 and 4. As expected, these
values declined with series length, despite the fact they were came from a model that
was memory-free. Note, however, that this memory-free decline differed substantially
from the actual results of lure trials in Experiment 1. These latter values are shown
by the black bars in the figure. Thus, we conclude that a substantial portion of the
series length effect was caused, not by the similarity alone, but by some process that
is memory-dependent.

The effect of series length obtained here with synthetic faces accords well with
results from an analogous experiment on episodic recognition of lower-dimensional
stimuli, compound sinusoidal gratings (Kahana & Sekuler, 2002). Specifically, with
both kinds of stimuli, mean recognition performance declines with series length, there
is no clear sign of retroactive interference effects, and a strong recency effect is seen,
but no primacy effect.

Ezxperiment 2

Experiment 1 demonstrated that one face’s similarity to another influences
episodic recognition memory. However, the precise nature similarity’s role in memory
remains to be clarified. When sets of study items were composed for Experiment 1,
no more than one face was allowed to come from each category of face, A ... D. As a
result, study items differed from one another in two ways: the categories from which
they were drawn, and each face’s distance from the mean face. Scrutiny of items that
lie in the same row of Figure 1 suggests that for many faces, one can identify the
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Figure 4. Panel A. Proportion correct recognition as a function of the difference between
p and the study item in face space. Data are for study series of length 1. Error bars
represent +1 standard error of the mean of the Probe-Study item distance were smaller
than the width of dots. Panel B. Predicted and obtained proportion correct recognition
responses on lure trials for study series of length 2, 3 and 4. Predicted values assume
perfect memory and judgments made on the basis of p’s proximity to that study item to
which p is nearest, in face space.

characteristics each shares with others in its row. These shared characteristics permit
the faces to be categorized.

Various studies have demonstrated that categorization can affect perception.
When subjects learn to categorize stimuli, physical differences between categories
gain importance relative to any within-category differences (for example, Goldstone,
1994, 1998; Levin & Beale, 2000). This is called the categorical perception effect,
and is usually assessed under conditions in which subjects are allowed or encouraged
to encode items together with the categorical attributes of those items. To minimize
category effects in the present experiments, we kept stimulus duration and ISI brief.
The model we intended to test later, NEMo, is mute about categorization, making no
provision for such effects. If differences in category membership did affect recognition
memory performance, NEMo would have to be significantly revised. Therefore, it
was important to determine whether category membership played some role in our
short-term visual memory paradigm.

In Experiment 2, we aimed to investigate the link between categorization and
visual short-term memory. We compared memory for three-item long study series,
which were generated according to two different rules. One rule forced all three study
faces to come from different categories of faces, A ... D; the other rule allowed two or

13
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even three study faces to come from the same category. We use the terms ”between-
category” and ”"within-category” to describe the series resulting from application of
the two rules. Note that between-category series are formed according to the same
rule that generated series in Experiment 1.

Methods

Apparatus and Stimuli The stimuli and apparatus were as in Experiment
1 except that multiple subjects were tested simultaneously, using computers in a
classroom cluster. Although subjects did not use chin rests, they were encouraged to
maintain a constant viewing distance of approximately 57 cm from their computer.

Subjects Twenty nine Brandeis undergraduates participated as part of a course
requirement; during a session, after several trials of practice, each subject gave 436
trials. All subjects were naive to the experimental purpose, and none had taken part
in Experiment 1.

Procedure The procedure was the same as Experiment 1 except that (a) study
series always comprised three faces, and (b) study items and probes were presented
for 250 msec each. During a testing session, between-category and within-category
series were randomly intermixed, and occurred with equal frequency.

Results The gray bars in Figure 5A show the proportion correct on trials with
within-category study series on target trials. Data are separated according to the
serial position of the study face that matched p. The black bars in Figure 5A show
results with between-category study series on target trials. Proportion correct re-
sponses were highest at the last probe position (F(2,56) = 31.6, p < .01), replicating
Experiment 1 (compare with Figure 3). A repeated measures ANOVA showed that
the proportion of correct responses was higher for within-category series than for
between-category series, F'(1,28) = 16.5, p < .01. This effect did not vary signifi-
cantly with p position, F(2,56) = .054, p = .95.

We suspected that the differences between the two conditions shown in Figure 5A

might have overestimated the real differences between those conditions. On average,

a study set whose members came from different face categories would tend to have
members more different from one another, in Euclidean space, than would the average
study set whose members all came from a single category of faces. Because recognition
accuracy is influenced by stimulus similarity (Figure 4) we reanalyzed the data from
Experiment 2, equating between- and within-category results for the similarity of
study series members to one another.

For each stimulus series, we used the Euclidean distance between pairs of faces
to calculate that series’ mean pairwise distance among its study faces. We then or-
dered all stimulus series for each condition, between-category and within-category,
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Figure 5. Panel A. Proportion correct recognition responses on target trials for probes
matching study items in serial positions 1-3. Gray bars represent study series whose mem-
bers were in the same category of face; black bars represent series whose members came
from different categories. Arrows show proportion correct on lure trials. Panel B. Results
after correction for summed similarity. In both panels, error bars represent +1 standard
error of the mean, corrected for within subject variability (See Loftus and Masson (1994)
for details

according to the series’ mean pairwise distance. Next, from the between-category
data we discarded all series whose mean pairwise distance exceeded the largest mean
pairwise distance in the within-category series, and obtained equivalent mean pair-
wise distance for both conditions. The between-category trials that passed this test
were used to recalculate the proportion correct responses shown for that condition
in Figure 5B. Note this correction for similarity within a study series reduced the
effect of category membership, and the difference between conditions were no longer
statistically significant, F'(1,28) = 2.42, p > 0.10.

Discussion It appears that after the pairwise similarity of faces has been taken into
account, the category to which the faces belonged exert a negligible effect on episodic
recognition memory. Of course, it is impossible to deny that category membership can
be consequential for various perceptual and memory tasks, under conditions different
from our own, e.g., conditions of longer stimulus exposures, longer inter-stimulus
intervals, or larger differences between faces. But our conditions clearly succeeded
in minimizing effects of category membership. As a result of the null result, our
subsequent experiments and modeling did not assign any special weight to category
membership when similarity-related variables were being calculated.

15
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Ezxperiment 3

Experiment 1 suggested that the basic features of recognition memory for a series
of briefly-presented synthetic faces may not be substantially different from memory
for other, simpler stimuli tested under comparable conditions. For a deeper under-
standing of memory and other processes at work in this result, we exploited a summed
similarity model that has successfully accounted for recognition memory with com-
pound sinusoidal gratings. To maximize the power of the modeling we needed reli-
able empirical performance measures for each individual stimulus series that would be
modeled. Such measures, in our memory paradigm, require ~30 replications per series
for each subject (Kahana & Sekuler, 2002). To accommodate this many replications
within a reasonable number of trials, we culled the stimulus series from Experiment 1,
retaining only 60 series, each with three study faces, for use in Experiment 3. These
60 series spanned the full range of recognition performance.

Perceptual similarity among stimuli is central to the computational model we in-
tended to apply to face memory. With compound gratings as stimuli, similarity can
be defined by scaling stimuli in terms of subjects’ difference thresholds for spatial
frequency (Zhou, Kahana, & Sekuler, 2004). That same approach would be burden-
some with face stimuli because the difference threshold varies substantially from one
part of the space to another, with smallest difference thresholds in the neighborhood
of the mean face (Wilson et al., 2002). Therefore, in addition to the native metric
representations of synthetic faces, as represented in Figure 2A, we also used non-
metric multidimensional scaling (MDS) to characterize the perceptual space within
which our face stimuli were located, and to quantify the distances between faces in
that space. The data on which MDS was based came from oddity judgments made
on simultaneously-presented trios of faces. To assess subjects’ viewing behavior and
strategy while viewing these faces, we followed up the main experiment by measuring
the fixation behaviors of several subjects while they made oddity judgments like those
made in the main experiment.

Subjects Two male and six female volunteers aged from 20 to 25 years participated
in the main experiment, and two female volunteers aged from 20 to 22 years partic-
ipated in the follow-up, eye tracking experiment. None took part in Experiment 1
or 2, and all were were naive to the purpose of this experiment. They had normal
or corrected-to-normal visual acuity as measured with Snellen targets, and normal
contrast sensitivity as measured with Pelli-Robson charts.

Procedure

Recognition Memory Of 60 different stimulus series, half were target trials,
in which p replicated one of three study items; the remaining lists were lure trials, in
which p replicated none of the study items. The timing of stimulus presentation was
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identical with that of Experiment 1. Subjects participated in four one-hour sessions,
490 trials in each. The first 10 trials of each session were treated as practice and were
eliminated from the data analysis; this retained 32 replications for each series and
subject.

Multidimensional Scaling We used non-metric multidimensional scaling
(MDS) to assess the perceptual similarity structure of the synthetic faces (Lee, Byatt,
& Rhodes, 2000). The data required for such scaling were generated using the trian-
gular method of trials (Ennis, Mullen, Frijters, & Tindall, 1989) On each trial, three
faces were presented side by side, simultaneously for 500 ms, and subjects chose the
one that seemed most different from the other two (Romney, Brewer, & Batchelder,
1993; Wexler & Romney, 1972). To minimize the possibility that vernier-type cues
might contribute to the dissimilarity judgments, the vertical position of each was
randomly offset by a sample from a uniform distribution spanning + 16.8 min. Each
possible stimulus pair (Face;, Face;) is presented with every other stimulus (Faces).
If stimulus Face; is selected as the stimulus most different from the others, then
the remaining stimuli, Face; and Face;, are deemed similar, either explicitly or by
default. A similarity matrix is constructed by counting the number of times that a
stimulus pair (e.g., Face;, Facey) is designated as ”similar” when placed in combi-
nation with various other stimuli (e.g., Faces ... Faces).

To control the number of trials required for the multidimensional scaling, we used
a Balanced Incomplete Block design (Weller & Romney, 1988). For this design we
generated triads of faces ("blocks”), whose members were drawn from the complete
set of 21 faces. This selection was constrained so that each of the 210 pairs of faces
occurred in the context of 30 triads. This arrangement meant that the 30 trials whose
triads included any particular pair of faces were likely to have different faces as their
third member. The displacement of three faces were randomly determined for each
trial.

Subjects participated in three one-hour sessions, each with 710 trials. The first
10 trials of each session were treated as practice and were eliminated from our data
analysis. The remaining 2100 triadic comparisons per subject were converted into dis-
similarity matrices, which were processed by SPSS’ ALSCAL and INDSCAL routines.
All runs used an Euclidean distance model. A small, supplementary experiment was
done to examine subjects’ fixation patterns while they viewed a limited number of
stimulus triads, and attempted to identify the face that was most different from the
other two.

Apparatus and Stimuli In the main experiment, apparatus and synthetic face
stimuli were the same as in Experiment 1. In a supplementary study of subjects’
fixation behavior, stimuli were presented on a 19 inch monitor under the control of
Matlab, and viewed with 57 cm viewing distance. The visual angles of presented faces
were same as in Experiment 1. The monitor’s refresh rate was 75 Hz; display mode
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was set to 800 by 600 pixels. Eye position was recorded by an ASL Eye Tracking
system (Model 504), a video based system that uses the pupil-corneal reflection to
measure eye gaze location. Gaze was sampled at 60 Hz, and recorded to a spatial
precision of just under 0.5 degrees visual angle. The apparatus monitored only the
left eye. Prior to testing, eye position was calibrated using a standard, 17-target
fixation pattern.

Proportion Correct

1 2 3
Probe Position

Figure 6. Proportion correct recognition responses on target trials for probe matching
various study items. Error bars represent +1standard error of the mean, calculated using
the correction suggested by Loftus and Masson (1994). The arrow to the right of the graph
represents the mean proportion correct on lure trials. Each star shows the proportion
correct for the corresponding condition in Experiment 2.

Results

Recognition Memory Figure 6 shows the mean proportion correct as a func-
tion of p’s serial position. An ANOVA showed significant difference among those
positions, F'(2,14) = 24.43,p < 0.001, and an a priori comparison revealed a signifi-
cant recency effect, F(1,7) = 32.98, p < 0.01. For comparison, corresponding results
from Experiment 2 with the same series are shown as stars in the figure.
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Multidimensional Scaling MDS solutions were obtained in spaces varying
from 1-6 dimensions. r2 values, which represent the proportion of variance accounted
for in the scaled data, increased linearly as the number of dimensions varied from one
to three; this increase saturated thereafter. The three-dimensional solution generated
by MDS is shown in Figure 2B. Each symbol represents one synthetic face, and the
pairwise distances between symbols represents the pairwise perceptual dissimilarity of
the faces. Based on the values of 72, we used three dimensional solutions in subsequent
modeling. With the three dimensional space, Kruskal’s Stress measure was 0.26, 2
was 0.62.

Procrustes analysis (Dryden & Mardia, 1998) linearly transformed the matrix
of values for the MDS solution to bring it into best conformity with the matrix
of pairwise distances in the faces’ physical space. The outcome, which is shown
in Figure 2B, was based on the Euclidean similarity transformations of translation,
reflection, orthogonal rotation, and isotropic scaling of points in the MDS solution. If
the perceptual representation of these synthetic faces were identical to their physical
representation, the post-Procrustes MDS solution would be perfectly congruent with
the representation in Figure 2A, where faces A, B, and C are orthogonal to each
other, and exemplars of face D lie on the diagonal.

Clearly, the Procrustes transformation does not eliminate all residual differences
between the perceptual space, as represented by MDS, and the physical space. After
the Procrustes transformation, the sum of squared residual discrepancies between
the physical representations and the transformed-MDS representations was 0.26. We
used Monte Carlo methods to cast this sum of squares into the same units that were
used for the Euclidean physcial space (Figure 2A). Procrustes analyses were done on
matrices of the faces’ physical coordinates, which had been randomly perturbed to
varying, known degrees, by the addition of independent, zero-mean, Gaussian random
deviates to each of the three coordinates for each face. This operation was carried out
1,000 times for a number of Gaussian distributions with different standard deviations.
From the mean residual sums of squares associated with each standard deviation
value, we identified the random perturbation of face coordinates that produced the
same residual sum of squares seen with the Procrustes transformation of the MDS
solution. The standard deviation of the residual difference between the MDS solution
and the original physical coordinates was equivalent to 6-7%, which corresponds to
~1.5 times of the separation of neighboring faces within a single category of faces, A

..D.

To examine the residuals on a finer scale, the mean residuals between the MDS
solution and the faces’ physical coordinates were calculated and then sorted into bins
according to the distance between faces in a study series and the mean of the 21 faces.
These values are plotted in Figure 7. Note that the magnitude of the residuals grew
with increasing distance from the mean face, suggesting that perceptual and physical
representations of faces were most discrepant for the more extreme faces in our set.

As a further comparison between the MDS and physical representations of our 21
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faces, we computed the vector angles between perceptual exemplars of A, B, and C.
These vector angles are shown in Table 1. Faces just 4% away from the mean face were
excluded from these calculations because in MDS space those faces clustered tightly
around the mean face, which made angle measurements for those faces meaningless.
The mean angles based on the 8, 12, and 16% data were roughly 90°, suggesting
that the perceptual similarity space preserved much of the orthogonality that had
been built into the physical representations of the faces. However, all of the angle
estimates dropped appreciably when the 0.20 faces were included, which confirms the
demonstration in Figure 7 that these extreme faces deviate most from Figure 2A’s
space.

Table 1: Angles Between Perceptual Representation of Faces A-C

Face Distance | AB Angle | AC Angle | BC Angle

8% 125.7 65.3 116.1

12% 83.2 74.2 80.7

16% 574 71.5 83.4

20% 46.5 54.9 63.3

Mean all distances 78.2 66.5 85.9
Mean 8% to 16% 88.8 70.3 934

Model NEMo, the model we applied to the recognition memory data, had previously
been used to account for recognition memory with simple, low dimensional stimuli
— compound gratings (Kahana & Sekuler, 2002). NEMo departs from the classic
summed similarity models of item recognition (e.g., McKinley & Nosofsky, 1996;
Nosofsky, 1986) by allowing recognition judgments to be determined not only by the
similarity between the probe, p, on one hand, and each study stimulus, on the other,
but also by similarities among study items themselves. Given a series of L study
items, s;...sp, and a probe, p, NEMo responds ”yes” if:

L
zan(p,si-l—e,-) L(L ,BZ Z (site,s;+€)>CL (2
a= , . i=1 j=i+1 ,
Summed Probe-Item Similarity Mean Inter-stimulus Similarity

where 7(p,s;) is the perceptual similarity between p and the i™ study item (see
Equation 3, below); € is a vector representing the noise associated with each stimulus
dimension, o is the weight given the i** study item, and Cy, represents the optimal
criterion for a series of L study items. To allow for the possibility that subjects’
decision rule might incorporate inter-item similarity, NEMo adds together (i) summed
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Figure 7. Mean distance between faces’ representations in physical space and in perceptual
(MDS) space, as a function of distance from the mean face.

similarity and (ii)inter-stimulus similarity, weighting the latter by a parameter 8. If
B = 0 the model reduces to a standard summed similarity model (Nosofsky, 1986)
with noisy item representations (Ennis, 1988) and a deterministic decision rule. If
B < 0, a given lure becomes more tempting when s;...s;, are widely separated from
each other. Conversely, if § > 0, a lure becomes less tempting, and fewer ”yes”
responses are made, when s;... s; are widely separated from each other.

In this model, the similarity, 7(s;, s;), between representations, s; and s;, is given
by:

e 85) = ac 745 ©

where d is the weighted distance between the two stimulus vectors, and 7, ¢ and a
jointly determine the form of the generalization gradient.

We defined similarity in both physical and perceptual (MDS) spaces, and than
ran two parallel simulations of NEMo , one with each definition of similarity. Among
parameters in Equation 3, we fixed ¢ = 1, which implements a simple exponential
generalization function. Previously, when ¢ was a free parameter, its estimated values
tended to be very close to 1 (Kahana & Sekuler, 2002). To reduce NEMo’s free
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parameters further, we used an independent, empirical estimate of 7 and a. We
estimated similarity in physical space from the data in Figure 4A, which we took as
an empirical approximation to the similarity tuning function in physical space. After
fitting an exponential function to the data in that figure, the function’s exponent and
y-intercept, 9.20 and 0.84, were used for 7 and a respectively, in one set of model
simulations. We then transformed the distances along the x-axis of Figure 4A using
inter-face distances from MDS, and fit a second exponential function, this time to
the transformed data. This second function represents the tuning function defined
in perceptual space. The function’s exponent and y-intercept, 11.14 and 0.91, were
used as 7 and a respectively, in a second set of model simulations. Finally, we fixed
one other parameter, setting NEMo’s criterion to 0.5, which is the rational, unbiased
criterion that lies halfway between the means of summed similarity values generated
on target and on lure trials. In studies of recognition memory for gratings (Kahana
& Sekuler, 2002), subjects’ mean criterion was found to be very close to this value.

Simulations and Application of Model We fit NEMo to subjects’ recognition
accuracy on each of the 60 different stimulus lists in Experiment 3. To find NEMo’s
best fitting parameters a genetic algorithm (Mitchell, 1996) minimized the root-mean
squared-difference (RMSD) between observed and predicted recognition scores. In
applying the genetic algorithm, a population of 1000 random parameter sets was
allowed to evolve for 20 generations. Each parameter set was allowed to run for 1000
simulated trials for each stimulus list to produce an estimate of RMSD. Then each
of the 500 least-fit parameter sets was replaced with a new parameter set at the end
of every generation by randomly drawing each of their parameter values from one of
the 500 best-fit parameter sets. The 500 best-fit parameter sets were mutated by a
single, Gaussian parameter change with a standard deviation of 30% of a parameter’s
range.

We performed the entire model-fitting procedure twice. In the first application,
inter-face similarity values, the value of 7, and a used in NEMo were defined by
the physical distances between faces, that is, the differences among the parameter
sets used to generate particular exemplar faces; in the second application, inter-face
similarity values, 7, and a were defined by the MDS descriptions taken from subjects’
perceptual space.

Results of Model Simulations: Fits to Mean Data We first fit average
performance across eight subjects by using similarity in physical space and in av-
erage MDS perceptual space. Table 2 gives the best fitting model parameters for
NEMo derived from the genetic algorithm. The column Physical shows the best pa-
rameters using stimulus distances in physical space, and the column MDS shows the
best parameters using stimulus distances in MDS, perceptual space. The first three
parameters, o;, 07, and o3, are the variances of noise distributions: one for each
dimension of the three dimensional, perceptual space. 3, 02, and o3 correspond to
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dimension 1, 2 and 3 in Figure 2. The next two parameters, a; and g, represent
forgetting for the first and second item in a study series, respectively. (For the last
item in a study series, a3 was set to one.)

As explained earlier, 8 represents the importance of inter-item similarities. Its
negative sign, 8 = —0.53 and —0.34 for the two simulations, indicates that when
study items were similar to one another the model increased its tendency to treat a
lure as a target. Note, finally, that the RMSD associated with the perception-based
fit, 0.101, is somewhat smaller than the RMSD associated with the fit based on the
faces’ physical representation, 0.123.
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Figure 8. Proportion ”yes” responses plotted against predictions from NEMo. Panel A.
Interstimulus distances used in NEMo were taken from physical description of stimuli. Panel
B. Interstimulus distances used in NEMo were taken from MDS solution.

Figure 8 shows the correlations between the predicted proportion of "yes” re-
sponses from NEMo and the observed mean proporion of ”yes” responses. The predic-
tions were made with similarity defined either by the physical representations (Figure
8A) or by the MDS solution averaged across all subjects (Figure 8B). With average
data, NEMo produced a better account of the data when it incorporated perceptual
similarity among faces. Physical and perceptual similarities produced r? = 0.68 and
0.78, respectively.

As just noted, NEMo’s predictions tended to be more accurate when perceptual
rather than just physical similarities were taken account of, but those predictions had
a number of clear outliers. These were stimulus series on which the model failed badly,
specifically series that deviated by 0.20 or more from the predicted proportion correct.
To examine the cause of these failures, we scrutinized the makeup of these series. Of
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the five outliers, we found that three contained two or more faces that deviated
from the mean face by 0.20. To this outcome, Monte Carlo simulation assigned a
probability 0.02< p <0.01. So, faces with the greatest deformation relative to the
mean face produced the largest errors in NEMo’s predictions. As shown in Figure
7 and in Table 1, these extreme faces deviated appreciably from the orthogonal,
physical representations of the faces. The perceptual transformations associated with
the "strangeness” of these faces could be at fault. We suspect that ”strangeness”
essentially introduced an extra perceptual dimension specific to those stimuli, and
because this extra dimension is limited to a small subset of faces, it would not be
fully represented in the MDS solution.

Results of Model Simulations: Fits to Individual Subject Data Having
fit the recognition results averaged over subjects, we fit individual performance by
using physical representations of faces or by using individual MDS solutions for each of
the eight subjects. One aim here was to obtain confidence limits for each parameter.
Table 3 gives the mean and the standard deviations of best fitting parameters for
each subject. Note that all values were consistent with those obtained by fitting
the mean data. Of course, the RMSD values associated with individual subject fits
were somewhat higher than the RMSD value associated with fitting the mean across
subjects, because each subject’s results would be based on relatively few trials per
study series, which diminishes the reliability of the empirical data.

Parameters o; and oy were significantly smaller than a3 for both simulations
using physical space coordinates: F(1,7) = 18.6, p < .01 for oy, F(1,7) = 73.3,
p < .01 for ap; with MDS perceptual space coordinates, the comparable values were
F(1,7) = 15.3, p < .01 for a4, and F(1,7) = 61.0, p < .01 for ap. These inequalities,
with oy and ay < o3 represent forgetting. Additionally, a one-sample t-test showed
that the mean 3 values were significantly less than zero for the model simulation with
physical space coordinates, t(7) = —3.51, p = .01, and for the model simulation with
MDS perceptual space coordinates, ¢(7) = —4.15, p < .01, which confirms inter-item
similarity’s important contribution to recognition judgments.

To assess the difference between NEMo’s predictions using physical descriptions
and predictions using MDS descriptions of the faces, we compared two sets of simula-
tions: one with physical descriptions, the other with MDS descriptions. The advan-
tage of MDS perceptual description observed with NEMo’s fit to averaged data disap-
peared. On the contrary, NEMo’s predictions with physical descriptions were slightly
better than NEMo’s predictions with MDS descriptions, although the difference of
RMSD values between two sets of simulations were not significant (matched-sample
t-test, ¢(7) = 2.13, p = .07).

The reliability of MDS solutions Previously, we considered one explanation
for the occasional failures in NEMo’s fit: the perceptual distortion associated with the
extreme items in our set of faces. Here, we take up another possible cause: within-
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Table 2: Best fitting parameter values for NeMO’s fit to the data

Parameter | Meaning Physical | MDS
oy Dimension; noise 0.033 | 0.032

o2 Dimensions noise 0.072 | 0.046

o3 Dimensions noise 0.045 | 0.046

aj Forgetting of 1°* item 0.47 | 0.57

1o %) Forgetting of 2™ item 040 | 0.45

8 Interitem similarity -0.53 | -0.34

T Tuning function steepness 9.20 | 11.14
RMSD 0.123 | 0.101

Table 3: Means and SDs of best fitting parameters for individual subjects’ simulations

Parameter | Meaning Physical SD | MDS SD
o Dimension; noise 0.035 1 0.012 | 0.033 | 0.020

o9 Dimensiony noise 0.053 { 0.032 | 0.061 | 0.022

o3 Dimensionz noise 0.040 | 0.019 | 0.044 | 0.021

o Forgetting of 1%¢ item 0.48 | 0.34| 053 0.34

ay Forgetting of 2" item 0.37| 021 0.42]| 0.21

I} Interitem similarity -0.56 | 0.45] -0.67 | 0.46

T Tuning function steepness 9.20 -111.14 -
RMSD 0.152 | 0.039 | 0.168 | 0.032

subject variability in the dissimilarity judgments on which the MDS solutions were
based. To create a dissimilarity matrix for each subject, subjects observed three faces
simultaneously for only 500 ms, and chose the face that appeared most different from
the other two. The brief exposures were influenced by the stimulus duration in our
recognition memory experiments. We reasoned that if subjects were to devote 110
msec to viewing each face in the trio, a total exposure of 500 msec would permit
about two shifts in fixation, allowing all the faces to be viewed directly. However, the
time pressures introduced by relatively brief stimulus presentations might also have
contributed to variability in subjects’ responses, which in turn would have introduced
additional variability when those responses were transformed to dissimilarity matrices.

To assess the consistency of subjects’ triadic judgments we computed two different
mean MDS solutions. One solution was based on subjects’ dissimilarity judgments
on all odd-numbered trials (that is, first, third, fifth, etc.), the second solution was
based on judgments from all even-numbered trials (that is, second, fourth, sixth,
etc.).? For each three dimensional solution, the Euclidean distances between all face

2The balanced incomplete block design forced us to take this indirect approach. Differences in
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pairs were taken, and the correlation calculated between pairwise distances from odd
trials and pairwise distances from even trials. The results are shown as a scatterplot
in Figure 9. Despite the brief stimulus duration, and despite the 50% reduction in
the number of judgments on which each MDS solution was based, the pair of MDS
solutions produced by this process had a relatively strong correlation with r2=0.79,
which supports the idea that triadic comparisons generate good, reliable measures of
similarity.

w
T

MDS distance with ODD trials
—_ N

MDS distance with EVEN trials

Figure 9. Distance between items in the MDS solution calculated by using even trials and
them calculated by using odd trials.

Individual differences among subjects In addition to within-subject vari-
ability, between-subject variability, that is, various individual differences, could di-
minish the quality of model fits when NEMo was applied to data averaged over
subjects. In the MDS solution, individual differences were represented by a vector
of weights defined in an additional, individual difference space. Table 4 shows the

the makeup of triads on successive trials prevented us from comparing judgments themselves. As a
result, our comparisons had to be mediated via MDS.
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weights for each subject on each of the three dimensions, along with the r? values
for each subject against the averaged MDS solution. The variation in weights and in
r? values suggests that average MDS solution we obtained might not equally reflect
different subjects’ perceptual representations. For example, Subject 1 and Subject
5 differed from each other, both in their dimensional weights, as well as in their r?
values. This variation in 72 values might have come from differences in the consis-
tency of individual subjects’ similarity judgments. To test this hypothesis, we derived
a within-subject measure of response consistency and rank ordered subjects’ consis-
tency measures and their 72. A rank order test showed that the correlation between
the two rankings was statistically significant (Kendall’s 7= 0.84, p<.05), which was
consistent with the idea that r2 values reflected subjects’ response consistency.

Table 4: Individual Subjects’ INDSCAL Weights and r? Values

Subject | Dim 1 [ Dim 2 | Dim 3 | r?

1 .49 .59 411 .89
45 .28 381 .61
.54 .49 411 .82
.63 47 341 .83
.15 12 131 .33
.45 40 47 (.76
.58 40 32 (.70
41 .46 .51 1.70

00 =3 O Uk W N

In a supplementary experiment, we measured several subjects’ eye fixations while
they performaed triadic comparisons. Of the 60 three-item study series used in main
part of Experiment 3, we randomly chose 12 series for use here. Each trio of faces
was presented five times in each of three spatial arrangements, e.g., xyz, yxz, or
zxy. Repetitions of any trio were randomly interspersed over 180 total trials per
subject. Three subjects participated in this supplementary experiment, one of whom
had participated in the previous MDS experiment. On average, subjects made 1.93
fixation shifts per trial (SD = 0.09). On 47.7% of the trials, subjects seemed not to
fixate every one of the three faces directly. However, for 88% out of all trials, subjects
selected as most dissimilar one of the faces that they had directly fixated. As the
distance between the center of one face and the center of a neighboring face was only
about 5 degrees visual angle, subjects could easily use perifoveal vision (see Geisler &
Chou, 1995) to identify the most different face and/or to decide the direction in which
to shift gaze. Surprisingly, the consistency in subjects’ judgments was not mirrored
by consistency in the pattern of fixations elicited by a triad on successive appearances.
In particular, the order in which faces were fixated seemed to be random, and not
systematically related to the dissimilarity judgment that would be made.
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Discussion

Multidimensional Scaling MDS requires as input a matrix of similarity or
dissimilarity judgments. Researchers have taken various approaches to generate such
matrices. For example, the input matrix has been generated by asking subjects to
rate the distinctiveness of items presented one at a time (Valentine & Bruce, 1986;
Valentine, 1991; Valentine & Endo, 1992; Lee et al., 2000), or to rate numerically
the similarity of items presented in pairs (Nosofsky, 1991; Johnstone & Williams,
1997; Peters et al., 2003). We took a different approach, using triadic comparisons to
produce the input matrix for MDS. We chose this method in part for its efficiency in
generating many comparisons per pair of faces, and in part because the task might
bear greater resemblance to our recognition memory task. For one thing, by encour-
aging subjects to distinguish among members of the briefly-presented triad, the task
engaged the rapid and sometime subtle distinctions required in the recognition judg-
ments. At the same time, variation in the triad’s constituents from one presentation
to another, mimicked the trialwise variation among study series.

Torgerson (1958) described other variants of the method of triadic comparisons,
which require subjects to make several explicit pairwise judgments per trial. Note
that the single explicit judgment required on each trial in our application actually
implies that subjects have made one or more pairwise comparisons, although such
comparisons are not made explicit. Letting the stimuli in the triad be ¢, 7, and k,
our subjects’ identification of one item as most dissimilar could reflect evaluations
of inequalities among |¢ — j|, | — k|, and |j — k|. Of course, when subjects are not
forced to make such evaluations explicit, one cannot rule out the possibility that,
particularly with time pressures, subjects might make only some subset of all the
pairwise comparisons. Although based on incomplete information, such judgments
would be better and more consistent than random guesses.

Simulations with NEMo Episodic visual memory for synthetic faces was sat-
isfactorily, though not perfectly, predicted by NEMo. That is, the results were consis-
tent with the idea that each study item was stored as a noisy exemplar, and also with
the idea that recognition decisions depended upon both summed similarity and inter-
item similarity. When NEMo used MDS descriptions of face stimuli, the outcome was
influenced by two sources of noise that were absent when NEMo used faces’ physical
descriptions. One source of noise came from any inconsistency in subjects’ judgments
of triads of faces. Although triadic comparisons were reasonably consistent, there is
some obvious residual variability in those comparisons, as suggested by Figure 9. A
second source of potential noise came from individual differences in similarity judg-
ments. Table 4 shows each subject’s weights on each of three MDS dimensions. It
is clear that subjects differed in the weights they give to different dimensions. As
a result, the mean MDS solution used in Figure 8 was not equally representative of
every subject’s own perceptual space. As these two noise sources were irrelevant to
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the specification of faces in physical units, other things being equal, we might expect
a larger error in NEMo’s predictions when NEMo used face specifications from the
MDS solution. This might explain why, when we simulated individual subjects’ per-
formance, we found no significant benefit of incorporating perceptual representations
into the simulations.

Ezxperiment 4

The simulations in Experiment 3 showed that visual memory performance could
be predicted quite well using a model, which takes account of both summed similarity
and inter-item similarity. Because the inter-item similarity term is a novel addition
to the summed similarity framework, we sought a more direct demonstration that
inter-item similarity actually was important in recognition. Therefore we designed
stimulus series in which both summed similarity and inter-item similarity were var-
ied. We expected that the responses produced by various combinations of the two
factors would directly demonstrate the contribution of each factor, even without the
mediation of a computational model.

Methods

Apparatus, Stimuli and Procedure The apparatus and stimuli were the
same as in Experiment 2. The procedure was the same as Experiment 2 except that
each trial’s three study faces were forced to come from three different categories of
faces, A...D. Study lists were first generated randomly. Because of the upper limit
on possible pair-wise distances in physical space, distances among randomly selected
faces tended to be small, which produced skewed distributions of summed similarity
and inter-item similarity. Moreover, the randomly-generated lists, caused some co-
variance between summed similarity and inter-item similarity. To test wider ranges
of both types of similarity independently, summed similarity and inter-item similarity
had to be to distributed uniformly. To generate series that met this criterion, the
distributions of two kinds of similarity were calculated after random generation of a
set of series, and existing stimulus series were replaced by newly generated ones until
we had a set of study series that satisfied the distribution requirement.

Subjects Twenty nine Brandeis undergraduates participated as part of a course
requirement; during a single session, each subject produced 436 trials. All subjects
were naive to the experimental purpose, and none had taken part in our other exper-
iments.

Results and Discussion For each series on which p was a lure, we used the
faces’ physical coordinates to calculate summed similarity between p and all study
items, and the inter-item similarity. For this purpose, similarity was defined by the
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Euclidean distance in physical space, that is, the distance measures represented in
Figure 2A. We sorted the trials into the cells of a 3x3 matrix, whose rows represented
three levels of summed similarity, and whose columns represented three levels of inter-
item similarity. At the end of the sorting, each cell of the 3x3 matrix contained 24
trials per subject. The proportion of ”yes” responses was calculated separately for
each of the nine cells in the matrix; these values are plotted in Figure 10. The
parameter of the family of curves is inter-item similarity. The proportion of ”yes”
responses increased with summed similarity, but decreased with growth in inter-
item similarity. A repeated measures ANOVA showed that both these effects were
statistically significant, F'(2,56) = 85.6,p < .01, and F(2,56) = 7.08,p < .05, for
summed similarity and inter-item similarity, respectively. The interaction was not
significant, F(4,112) = 1.16,p = .33.

Note that the directions of the two effects observed here reproduced the corre-
sponding effects that we saw in simulations with NEMo. Of particular interest was
the direct confirmation that inter-item similarity and summed similarity operate in
opposed directions to influence recognition judgments, just as NEMo demonstrated
they did.

General Discussion

Physical coordinates vs MDS solutions NEMo gave a good account of
visual recognition memory performance for face stimuli. When average data across
subjects were applied, the model’s account was improved when face similarity was
described in terms of the MDS solution, rather than in physical coordinates. How-
ever, the advantage of MDS solution was lost when NEMo was run on data from
individual subjects. It is important to note that, with either perceptual or physical
representations as input, NEMo had the same number of free parameters, therefore
this null difference did not result from a difference in the number of free parameters.

One might think NEMo’s predictions would be more accurate when model fits took
account of perceptual representations. Earlier, we considered sources of variability in
the triadic comparisons that were the basis for the MDS, perceptual representations.
These sources of variability could have somewhat limited the quality of model fits.
Another potential explanation for our failure to find improved fits with a perceptual
representation is the lack of strong overall differences between the faces’ physical
descriptions and their perceptual descriptions. As shown in Table 1 and in Figure 7,
the differences between two descriptions were small, except for those few faces that
deviated most from the mean face. We speculate that had our set of faces been more
heavily weighted toward extreme faces, the outcome might have differed.

We should note that the failure to gain an advantage from using a perceptual
description of face stimuli is consistent with results from one other recent study. Pe-
ters et al. (2003) found that the performance of categorization models was either
unchanged or even slightly diminished when face stimuli were described using MDS
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Figure 10. The proportion of ”yes” responses as a function of summed similarity. Values
are plotted separately for three different levels of inter-item similarity. The diameter of
each filled circle signifies the magnitude of inter-item similarity. Error bars represent 1
standard error of the mean, corrected for within subject variability (Loftus & Masson, 1994).

rather than a native, physical metric. In that study, subjects were trained to catego-
rize schematic Brunswik-Reiter faces (1937), as well as slightly more elaborate, car-
toon faces. These faces were defined in 4-dimensional physical spaces, which subjects
learned to bifurcate using a linear, separable criterion. After learning the category
membership of various exemplars, subjects’ categorization was tested with mixtures
of previously-seen and new faces. Peters et al. (2003) ’s results suggested that sub-
jects did not store the learned, long-term information as individual exemplars. We
believe that this was quite different from the case in our experiments on episodic
recognition, where subjects store individual exemplars, at least for the duration of a
single trial.

Differences from compound gratings One of the purposes of this study was
to investigate visual memory with higher dimensional stimuli, particularly by apply-
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ing NEMo to memory for synthetic faces. The best fitting parameters obtained here
preserved the general characteristics observed in Kahana and Sekuler (2002)’s studies
with memory for compound gratings. For example, in both studies, a values cap-
tured the observed recency effects, and the significantly negative § values suggested
that recognition judgments for both types of stimuli are modulated by inter-item
similarity. Moreover, despite the fact that 7 was set as a scale free parameter and a
was set to one in the study with compound gratings, and 7 were based on empirical
estimates here, the obtained 7 values were close between two studies (8.8 and 10.7
with compound gratings, 9.20 and 11.14 with synthetic faces).® It seems, then, that
similar similarity-distance functions operate for both low-dimensional (gratings) and
high-dimensional stimuli (synthetic faces).

However, memory for synthetic faces may differ in an important way from the
memory for compound gratings. Even though we found recency effect with synthetic
faces as well as with gratings, attributes of recency effect observed in this study
differed from those found with gratings. With gratings, performance increased linearly
across serial positions, from the beginning to the end of a study series (Kahana &
Sekuler, 2002). Here, though, the serial positions preceding the last one produced
essentially equivalent performance. This implies that with higher dimensional stimuli,
instead of forgetting previously seen items gradually, the last seen item diminishes
the memory for all previously seen items equally. This resembles a result reported
previously (Phillips, 1974, 1983; Phillips & Christie, 1977).

Because procedures differed between the studies, we must be cautious in attribut-
ing various discrepancies in the results to differences in stimulus dimensionality. But
we do believe that parallel studies of recognition memory for gratings, faces, and other
high-dimensional stimuli, as well as comparable stimuli from other sensory modali-
ties, will ultimately help us understand how stimulus dimensions contribute to human
episodic recognition memory.

3We ran simulations with various 7 values, and found that differences this small did not appre-
ciably alter the model’s resulting RMSD. So differences in the similarity-distance functions were not
critical to the success of model fits.
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Work on Objective Two: Coordinated Identification & Recognition

Many theories of memory distinguish between recognition that some item had
been encountered previously (item recognition) and recognition of that item’s previous
context or source (source recognition) (for example, Johnson, Hashtroudi, & Lindsay,
1993; Hockley & Cristi, 1996). When multiple study items are presented successively,
potential source information includes the items’ temporal order (e.g. ?, 7, 7). Some
researchers have suggested that item and source memory depend upon distinct neural
substrates (Dobbins, Foley, Schacter, & Wagner, 2002; Rugg & Yonelinas, 2003). To
assess the links between these two aspects of memory we generated coordinate assays
of item and source memory using specially-designed stimulus materials and a novel
paradigm.

Arguably, verbal study items, which are commonly used in memory studies, are
less than ideal for theory testing. In particular, it is difficult to specify the repre-
sentation of verbal materials in a metric space, a problem that can be significantly
curtailed when using perceptually-defined stimuli (Kahana & Sekuler, 2002; Yot-
sumoto & Sekuler, in pres). For example, sinusoidal luminance gratings, which can
be combined to synthesize more complex images such as textures and natural scenes,
can be described in low-dimensional spaces whose principal axes are spatial frequency
and orientation, dimensions that are extracted early in visual processing (Graham,
1989; Olzak & Thomas, 1999). Such stimuli, which can be designed to resist ver-
bal encoding and rehearsal (Hwang-Grodzins, Jacobs, Danker, Sekuler, & Kahana,
2005), make it easy to manipulate similarity relations among stimuli, and to exploit
those relations in computational modeling of memory (Kahana & Sekuler, 2002). The
present work exploits the metric properties of memory stimuli in order to identify and
quantify influences on source misidentification.

The present studies examine episodic memory for visual textures using both
old/new recognition judgments (asking subjects to judge whether a probe was part
of a just presented list) and source identification judgments (asking subjects to judge
the serial position of the item within the list). Subjects expressed their judgments on
an analog rating scale, which eased the generation of receiver operating characteris-
tics (ROCs). ROC analysis, which is grounded in signal detection theory (Wickens,
2002), has proven fruitful in testing theories of recognition memory. Our own anal-
ysis builds on the fact that many models of recognition and source memory make
explicit predictions about the shapes of ROCs (for example, Slotnick, Klein, Dodson,
& Shimamura, 2000; Hilford, Glanzer, Kim, & DeCarlo, 2002; Rotello, Macmillan, &
Reeder, 2004; Yonelinas & Levy, 2002).

Ezperiment 1

On each trial, subjects saw three briefly-presented study items. This series of
study stimuli, whose members varied from trial to trial, was followed by a probe
item (p), which either matched one of the preceding study items or differed from all
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three. Subjects used an analogue rating scale to identify the serial position of the
study stimulus that matched p; if no study item matched p, subjects registered that
judgment with a no response. The analogue scale also allowed subjects to express their
confidence in their judgments (Watson, Rilling, & Bourbon, 1964). These confidence
judgments were used to generate receiver operating characteristics (ROCs), which
were needed to test some theoretical predictions.

In Experiment 1, on 75% of all trials the probe item replicated one of the three
study items. For terminological convenience, we use the term Target ( T) to designate
trials on which p replicated a study item, and the term Lure (L) to designate trials on
which p did not replicate any of the study items. Additionally, we use ¢; to designate
the serial position in which the study item was replicated by p. Over all T trials, ¢;
equally often was the first, second or third item in the set of study items. Allowing
T trials to occur 3x as often as L trials helped the examination of possible effects of
t;’s serial position.

Stimuli Stimuli for each trial were drawn from a pool of compound sinusoidal grat-
ings, each comprising superimposed vertical and horizontal sinusoidal luminance grat-
ings. Each compound grating’s luminance profile, L; ,, was

A 2
Loy =Ly [1 N 1c0827 f(x) + Agcos Wg(y)]
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where L., is the mean luminance; f is the spatial frequency of the stimulus vertical
component, (vertical frequency) in cycles per degree; ¢ is the frequency of the hori-
zontal component, (horizontal frequency); A; and Aj,, the Michelson contrasts for the
two components, were set to 0.2, a value well above detection threshold. To minimize
edge effects, stimuli were windowed by a circular 2-D Gaussian with space constant of
1 degree visual angle. Before application of this window, a grating’s width subtended
5 degrees visual angle.

Recognition performance for visual stimuli is influenced by visual as well as
mnemonic factors, but we took steps to even out individual differences in vision. For
each subject, we generated a unique pool of compound grating stimuli by crossing five
vertical spatial frequencies with five horizontal spatial frequencies. Following Zhou
et al. (2004), we measured each subject’s visual discrimination threshold, and then
scaled all of that subject’s stimuli accordingly. This was meant to reduce the influence
of individual differences in perception on measurements of memory performance. Fre-
quency discrimination thresholds were measured using a staircase method in which
subjects compared the spatial frequencies (2 cycles/degree) of two briefly presented
gratings (750 msec duration each), which were separated by an inter-stimulus interval
(ISI) of 400 msec. These same temporal conditions were used in our memory experi-
ments. Frequency discrimination thresholds ranged from 4.3 to 13.1%, with a mean
= 8.2, SD = 3.1. Vertical as well as horizontal spatial frequencies were allowed to
assume values of 2 cycles/degree + 3 or 6 times a subject’s Weber fraction for changes
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in spatial frequency. As the mean Weber fraction was 0.082, the spatial frequencies
of the average stimuli were 1.51, 1.75, 2.0, 2.25, and 2.49 cycles/degree. Figure 11
illustrates the set of compound gratings that correspond to these typical values.

Horizontal Spatial Frequency (cycles/degree)
1.51 1.75 2 2.25 2.49

1.51

1.75

Vertical Spatial Frequency (cycles/degree)
2.25

2.49

N.

Figure 11. The average set of stimuli used in experiment. Within each row, vertical spatial
frequency changes by three or six threshold units, decreasing and increasing from the mean
of 2 cycles/deg, shown in the center of the stimulus matrix. Within each column, horizontal
spatial frequency changes in the same way, again relative to the mean of 2.0 cycles degree.

Subjects Subjects were ten paid volunteers whose ages ranged from 19 to 28 years
(mean=22.9, SD=3.3). Subjects’ acuity, measured with Landolt C targets, ranged
from 20/13-20/22, mean = 20/16.8, SD = 2.7; contrast sensitivity, measured with
the Pelli-Robson charts (Pelli et al., 1988) ranged from 1.80-1.95, mean = 1.92, SD
= 0.06.

Procedure Each trial’s set of study items comprised three compound gratings,
followed by a probe stimulus (p). Each of the three study stimuli (s;, sq, and s3) was
presented for 750 msec, separated by ISI's intervals of 400 msec each. Then, after a
delay of 1000 msec, a warning tone sounded, and p was presented for 750 msec. One
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second later, a response scale was presented, and remained visible until the subject’s
response had been registered. The response scale, shown at the left side of Figure
12, was used by subjects to report whether p had been in the study set, and, if so,
which study item, first, second or third, was matched by p. This scale consisted
of four selection arms, which were labeled “None,” “First,” “Second,” or “Third.”
If p seemed to match one of the study items, subjects used the computer mouse to
identify the arm that corresponded to the serial position (1st, 2nd or 3rd) of the study
stimulus, sy, Sz, or s3, which matched p. If p seemed to match none of the study items,
the subject positioned the cursor on the arm labelled “None.” In addition, subjects
were encouraged to position the cursor in a way that expressed their confidence that
they had selected the response correct arm. In particular, cursor positions near the
intersection of the four arms signaled little confidence in the judgment; positions
further away, toward to an arm'’s outer end signaled high confidence.

Once the subject was satisfied with the cursor’s location, a click of the computer
mouse button caused the computer to register the cursor’s location along the re-
sponse arm. No instructions were given about the speed with which subjects should
respond. On average, once the scale was presented, a response was registered in
about 2-3 seconds, which was sufficiently short that memory would not have decayed
significantly (Kahana & Sekuler, 2002; Sekuler, Kahana, McLaughlin, Golomb, &
Wingfield, 2005).

After each response, one of two tones sounded, providing feedback about response
correctness. On T trials, feedback was contingent upon the response’s identification
component: feedback signalled whether the subject’s response correctly identified
which study item, s;, sp, or s3, matched p; like incorrect identification responses, a
“None” response on a T trial brought feedback that the response was wrong. On L
trials, feedback was contingent on whether the response correctly reflected that none
of the study items matched p; all other responses, “First,” “Second,” or “Third,”
were followed by feedback that the response had been wrong.

Trialwise variation in stimulus spatial frequency forced subjects to base judgments
on the most recently-seen study items; hence, the requisite memory can be described
as episodic. Each subject was tested on 800 trials, distributed across four one-hour
sessions.

The display’s mean luminance was maintained at 17.8 cd/m?, which prevented
distracting luminance transients that would otherwise have accompanied change of
stimulus. A subject viewed the stimulus display from a distance of 114 c¢m, head
supported and steadied by a combination head rest and chin cup. Trials were self-
paced. On each trial, s;, sy, and s3 were sampled randomly without replacement
from the pool of 25 stimuli had been were generated for that subject. On 75% of the
trials, p replicated s;, sg, or s3, with equal frequency. On the remaining trials, p was
chosen randomly from the 22 members of the stimulus pool that were not among that
trial’s three study items. These probabilities were explained to subjects prior to the
experiment.
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Figure 12. Left: Four-armed, analogue selection scale used by subects to express judg-
ments in Experiments 1 and 2. Right: Two-armed, analogue selection scale used to express
recognition judgments in Experiment 3.

Ezperiment 2

Although Experiment 1 examined source identification, its overall design was
grounded in prior studies of recognition memory, in which no identification responses
were taken (Kahana & Sekuler, 2002). Because those studies used balanced sched-
ules of T and L trials, we were concerned that the unbalanced schedule used here
in Experiment 1 might undermine comparisons between Experiment 1 and previous
studies. Therefore, Experiment 2 replicated the conditions of Experiment 1, but with
a balanced schedule of stimuli.

Subjects Five paid volunteers (aged 18 - 21 years, mean = 19.8, SD = 1.1) partic-
ipated in this study. None had served in the preceding experiment. Subjects’ acuity
ranged from 20/13-20/20, mean = 20/16.6, SD = 2.7; contrast sensitivity ranged
from 1.80-1.95, mean = 1.89, SD = 0.08; frequency discrimination thresholds ranged
from 6.0-10.2%, mean = 9.2, SD = 3.1. All measurements used the same techniques
as in the previous experiment.

Stimuli and Procedure This experiment used the same stimulus set as the previ-
ous experiment, with stimulus spatial frequencies again tailored to individual subjects’
frequency discrimination thresholds. The proportion of T trials was decreased from
75% in Experiment 1 to 50% in Experiment 2. As before, with equal frequency p was
made to match s;, sg, or s3. These probabilities were explained to the subjects prior
to the experiment. There were no other differences between this experiment and its
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predecessor. Each subject was tested on 800 trials, distributed across four one-hour
sessions.

Ezperiment 8

In the preceding two experiments subjects made a source memory judgment on
each trial, identifying the serial position of the study item that matched p, or respond-
ing “none”. It was computationally simple to transform those source judgments into
equivalent recognition memory, but we cannot ignore the possibility that the result
might not truly correspond to recognition measured directly. How well does recogni-
tion measured indirectly, by means of transformed source judgments, correspond to
recognition measured when no source judgment was required? To answer this ques-
tion, for this experiment we modified the task used in the preceding two experiments,
eliminating source judgments and requiring only recognition judgments.

Subjects Five paid volunteers (aged 18-20 years, mean = 18.6, SD = 0.9) par-
ticipated. None had served in the preceding experiments. Subjects acuity ranged
from 20/15-20/25, mean = 20/18, SD = 4.5; mean contrast sensitivity was 1.95;
frequency discrimination thresholds ranged from 6.6-18.7%, mean = 10.6, SD = 4.7.
Measurements were made using the same techniques as in the previous experiments.

Stimuli and Procedure The only difference between Experiment 2 and Experi-
ment 3 was the judgment required of subjects, and the response selection screen on
which judgments were registered. As shown in Figure 12 (see Right Panel), for Ex-
periment 3, the oblique arms of the four-arm response display were eliminated, and
subjects indicated only whether p had or had not been among the study items for
that trial; no identification response was required. To remind subjects of the task, one
arm of the response screen was labeled "yes,” and the other arm was labeled "no.”
As before, participants signaled their confidence in each judgment by clicking on the
appropriate arm, with distance from the center of the screen indicating increasing
confidence. Subjects were informed that 7 and L trials would occur with equal fre-
quency. In other respects, Experiment 3 was identical to Experiment 2. Each subject
was tested on 800 trials, distributed across four one-hour sessions, and stimuli were
tailored to individual subjects’ frequency discrimination thresholds.

Owverall performance measures

Experiment 1 For a basic level analysis, data were cast into a 4x4 stimulus-
response confusion matrix. In this matrix, stimulus serial positions are designated
0 (for L trials), 1, 2 and 3, for each serial position; responses are described as “no”
(p matched none of the study items), “yes-1” (p matched the study item in serial
postion one), “yes-2,” and “yes-3.” Note that the proportions in the 4x4 confusion
matrix, and the marginals, correspond to standard accuracy measures for recognition
and source memory.




ROBERT SEKULER, PRINCIPAL INVESTIGATOR 39

To assess various aspects of memory, values in the confusion matrix were combined
in various ways. The first measure, the proportion of correct source identifications,
is given by

P(Id) = P(r;|t;), where i € {1,2,3}
where t1, £, and t3 represent the serial positions whose study items could match p;
T1, T2 and r3 are responses identifying p as matching the first, second or third study
item, respectively.

The second measure, the proportion of correct recognitions, is given by

P(R) = P(ri|t;), where i,j € {1,2,3}.

The third measure, the proportion of a correct source identification conditional
upon a correct recognition, is given by

P(Id|R) = {P(ri|t:}| P(rilt;) }, where i,j € {1,2,3}.

Table 5 gives the the means and within-subject standard errors for these three
measures. Also, the table’s last row shows the proportion of all trials, T or L, on
which subjects gave a source identification response, ry, ra, or r3 (on the remaining
trials, subjects responded no). In standard recognition experiments, this value cor-
responds to the proportion of trials on which subjects would have responded ”yes, p
did replicate one of the study items.”

Table 5: Summary Statistics for Experiments 1, 2, and 3 (Means and +SeM)

Quantity Expt. 1| Expt. 2| Expt. 3
P(Target) 0.75 0.50 0.50
P(1d) 0.683.04 | 0.59+4.04 -
P(R) 0.88+.02 | 0.78+.02 | 0.70+.03
P(Id|R) 0.774+.02 | 0.76+.03 -
P(r;y Nrp Nr3) | 0.784+.02 | 0.57+.02 -

Note first that the P(R) is appreciably larger than P(Id), which seems to signify
some loss of information in going from recognition (the sense that p had appeared in
the study set) to source identification, which requires some memory of an study item’s
serial position. A rough estimate of this loss of information is found in the value of
the table’s fourth measure, P(Id|R), which falls somewhere between P(R) and P(Id).
If there were no information loss, every correct recognition would be accompanied by
a correct identification, producing P(Id|R)=1.0, rather than the value obtained, 0.77.
Finally, the last row of Table 5 shows that on slightly more than three-quarters of all
trials subjects responded that p matched one of the study items. Note that this value
is a good match to the actual probability (0.75) which a p replicated a study item.
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We take this as a sign that subjects used a near-optimal strategy, matching response
probability to the actual probabilities of T"and L trials.

For a more detailed examination of relationships among the trio of response mea-
sures in Table 5, the overall proportions were broken down according to the serial
position of ¢;, the serial position whose study item was replicated by p. Figure 13A
shows the results. The proportion correct for L trials, 0.5140.03 is shown by the
single data point at the right side of the panel. The three serial position curves, one
for each response measure, show a strong recency effect, with performance on T trials
improving from ¢, through ¢;. A repeated measures ANOVA confirmed this result,
showing a significant main effect of serial position over all three curves in Figure 13A
(F(2,18) = 26.17,p < 0.01). Moreover, the three curves departed significantly from
parallelism, as confirmed by a significant interaction between serial position and type
of performance measure (F(4,36) = 5.25,p < 0.02). Because values for P(R) are
close to the upper limit of 1.0, an unambiguous of the interaction is not possible.
interaction suggests that the information loss between recognition and identification,
which was mentioned earlier, varies with serial position. Note that the P(Id) and
PR) were calculated only from T trials, that is, only when p matched one of three
study items. False alarm rates, the proportion of identifying L as T, were 0.12, 0.13,
and 0.11 for sy, s2, and s3, respectively. These false alarm rates did not differ reliably
across serial positions (F'(2,18) = 1.60,p > 0.20).
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Figure 18. Proportion correct recognitions, identifications, and identifications given correct
recogntions as a function of the serial position of the study item replicated by p. Shown
also is the proportion correct rejection of lure stimuli (right side). Panel A: Results from
Experiment 1; Panel B: Results from Experiment 2. Vertical bars around each data point
represent +1 within-subject standard error (e.g., Loftus & Masson, 1994).
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Experiment 2 Table 5 shows the basic results for Experiment 2. Over all target
serial positions, the proportion of correct recognitions was 0.78. The proportion of
correct source identifications was just 0.59, while the conditional probabilty of a cor-
rect source identification given a correct recognition was 0.76, indicating essentially
the same partial loss of source memory as in Experiment 1. Figure 13B shows the
proportion of correct responses for L trials was 0.55 +.03. Additionally, as in Exper-
iment 1, the serial position of the study item matched by p had a substantial effect
(F(2,8) =20.70,p < 0.01). False alarm rates were 0.09, 0.15, and 0.09 for ¢;, 5 and
t3, respectively.

Experiment 3 Recognition memory performance for Expeirment 3 was expressed
as the proportion of correct recognition responses: 0.70+.026. As in the previous
experiments, a repeated measures ANOVA demonstrated a main effect for the serial
position of the study item that matched p, F'(2,8) = 11.62,p < 0.01. We can compare
the correct recognition measures from the second experiment, in which recognition
was calculated by summing identification responses, to the forced-choice recognition
measure in this experiment. A repeated measures ANOVA showed that the serial
position results for Experiments 2 and 3 did not differ from one another, F(2,16) =
1.74,p > 0.20.

Receiver Operating Characteristic (ROC) analysis

To compare recognition measured by identification judgments (Experiments 1 and
2) and recognition measured directly (Experiment 3), we calculated the proportion
of correct recognition responses produced by the two tasks. Recognition measures
differed significantly between Experiments 1 and 2 (p = .02), most likely because of
the experiments’ different ratios of T to L trials. Given that T trials comprised 75%
of all trials in Experiment 1, but just 50% of trials in Experiments 2 and 3, signal
detection theory would predict these two values of P(R) to be ordered as they are.
This hypothesis is bolstered by the observation that the overall proportion of both
correct recognitions and false alarms were higher in Experiment 1 than in Experiment
2 (see Figure 13). Also consistent with this hypothesis is the similarity in P(R) for
Experiments 2 and 3, 0.88+.02 and 0.784-.02 respectively, (p = .18.02).

The difference in stimulus schedule could have affected performance either by
changing accuracy of memory, such as might come from differences in task difficulty
and attentional demands, from a change in subjects’ criterion, or from some combina-
tion of the two. To choose among these alternatives we generated receiver operating
characteristic (ROC) curves from the judgments in each of the three experiments. In
doing this, we exploited the confidence judgments provided by subjects’ use of the
continuous, analogue rating scale (Nachmias & Steinman, 1963).

Because our rating scale was analogue rather than comprising a fixed number of
small categories, we sought an empirical estimate of how many useful categories —
variations in confidence- were actually represented in subjects’ use of the analogue
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scale. After estimating that number, we used it to set the number of categories
used to generate ROC curves from subjects’ expressions of confidence. To determine
the analogue rating scale’s useable grain, we partitioned the rating scales into vary-
ing numbers of bins, and for each number we calculated the amount of information
transmitted by responses (Garner & Hake, 1951; Watson et al., 1964).

Using the method of Watson et al. (1964), information transmitted was calculated
for correct identication responses that had been sorted post hoc into varying numbers
of bins. The number of post hoc response bins was varied from 2 to 12, with the
constraint that for any subject, all bins contained equal numbers of responses. The
information transmitted by these correct resonses grew with the number of response
categories, but reached asymptote with no more than ten response categories.

Therefore, in generating ROC curves, we partitioned the analogue confidence re-
sponses into ten categories, with equal numbers of responses in each (see, Nachmias
& Steinman, 1963). To test the similarity of results in Experiment 1 and Experiment
2, individual ROC curves were generated for each subject, and the area under each
curve calculated using the trapezoidal rule for numerical integration (Wickens, 2002).
In this process, separate curves were generated for s;, s,, and s3, and are shown
in Figure 14. Figures 14A 14B show results from Experiment 1 and Experiment 2
respectively. s;, sq, and s3 were plotted by filled circles, open squares, and filled
triangles, respectively. The area beneath the curves was compared for each target
serial position and for the two experiments. Although the main effect for target serial
position was significant (F(2,26) = 47.32,p < 0.01), neither the difference between
experiments (F'(1,13) = 0.63,p > .40) nor the interaction of experiment and serial
position were significant (F'(2,26) = 1.87,p > .15).

Experiment 1 Experiment 2
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Figure 14. ROC curves based on source identification judgments for p in each of three
serial positions. Panel A: ROCs generated from Experiment 1’s results; Panel B: ROCs
generated from Experiment 2’s results.
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Figure 15 shows the mean recognition ROC curves for all three experiments. In
generating recognition ROC curves for Experiments 1 and 2, analogue confidence
ratings for r;, ry, and r; were aggregated. For the recognition ROC curve, derived
from Experiment 3, we used the analogue confidence ratings associated with yes and
no responses. These curves were generated for each subject, and the area under each
subject’s ROC curve was computed. The mean area under the ROC and the standard
errors associated with that mean was 0.73+0.019, 0.7540.027, and 0.68+0.037, for
Experiments 1, 2 and 3, respectively.

A one-way ANOVA confirmed that areas under the three ROCs did not differ
significantly from one another, (F(2,19) = 1.56,p > .20). This outcome carries two
important implications. First, the similarity of areas for ROCs from Experiment 1 and
Experiment 2 (p > .40) suggests that differences in recognition performance between
the two experiments (see Figure 13A, B) most likely arose from a change in criterion,
rather than from a change in memory strength per se (Donaldson & Murdock, 1968).
Second, the similarity of areas under all three curves supports the assumption that
recognition measured directly, as in Experiment 3, is well approximated by recognition
estimated by aggregating over the three separate identification responses, rj, rz, and
rj.

Next, z-transformed ROC curves were generated for each subject by cumulating
hit and false alarm rates and converting those cumulated values into standard scores
(Figure 16). Figures 16A and B show the mean zROC curves for identification in
Experiments 1 and 2, respectively; Figure 16C shows mean zROC curves for recogni-
tion in all three experiments. In a signal detection framework, the linearity of zZROC
curves suggests that the underlying noise and signal distributions are normal; if signal
and noise were normally distributed, zZROC curves would be linear in z-coordinates. A
number of memory studies have reported linear ZROC curves (Murdock, 1982; Don-
aldson & Murdock, 1968; Ratcliff, Sheu, & Gronlund, 1992). The slope of linear zZROC
curves reflects the relative variances of noise and signal distributions; if signal and
noise distributions were normal and had equal variance, the resulting zZROC’s slope
would be one. If the signal distribution had greater variance than the distribution on
noise trials, zZROC curves would have a slope less than one; the opposite relationship
between variances would produce a zROC slope greater than one (Wickens, 2002)

The zROC curve generated for each experiment is well described by a linear func-
tion. Values of ?'s for the linear terms in a second order polynomial fit were > 0.95;
addition of a quadratic term improved the fit by less than 0.02, which was not statis-
tically reliable. The slopes for the zZROC curves are shown in Figure 17. The slopes
for zZROC curves generated from source memory performance (Figure 17A) tended
to be <1.0. Although several experiments have reported slopes of zZROC curves for
source memory ~1.0, those experiments differ in a number of critical respects from
our own (Hilford et al., 2002; Glanzer, Hilford, & Kim, 2004). In contrast to these
zROCs with slopes less than one, zZROCs generated from recognition performance,
either directly (as in Experiment 3) or indirectly (for Experiments 1 and 2) each had
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Figure 15. Receiver Operating Characteristics (ROCs) for recognition performance in
Experiments 1-3. ROCs for Experiments 1, 2, and 3 are represented by open circles, closed
circles, and filled squares, respectively.

a slope significantly greater than one (see Figure 17B); this was true even for Exper-
iment 3, whose zZROC had the lowest slope, ¢(4) = 3.45,p < .03). The slopes from
Experiments 2 and 3 were not significantly different from one another (p = .40).

The few previously reported recognition zZROCs whose slopes were greater than
one were attributed to familiarity with the memory items (Ratcliff et al., 1992), or
to differing levels of attention during encoding (DeCarlo, 2002, 2003). Although we
cannot definitively rule out these possibilities, we believe that in our study a different
influence produced zROC slopes greater than one. We take this up below, where we
show that a summed similarity recognition model predicts this result.
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Panel A: zZROC curves generated from source memory performance in Experiment 1. Panel
B: zROC curves generated from source memory performance in Experiment 2. Panel C:
zZROC curves generated from recognition performance in Experiments 1, 2, and 3.
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Stochastic vs. deterministic origins of source erors In both Experiments 1
and 2, subjects made many source misidentifications. On about 25% of all T trials
subjects correctly rejected the no response, only to misidentify the serial position of
the study item that had actually been replicated by p.

Errors in source judgments can be useful in defining the information that subjects
use to make successful judgments. This is especially true when, as is the case here,
the metric properties of stimuli afford the possibility of relating misidentifications
to the characteristics of those stimuli. Misidentifications could have arisen in two
distinct ways. Some or all of the misidentifications could have been entirely stochastic,
reflecting random guesses made when subjects had no actual useable memory of
what had been seen. Alternatively, misidentifications could have come from some
deterministic process, for example, systematic errors associated with partial loss of
serial position information (e.g., Lee & Estes, 1977).

Although pure, information-free guessing implies the existence of a threshold and
is not consistent with non-threshold variants of signal detection theory, this hypothesis
is useful as a starting point for analysis of misidentifications. In Experiment 1, 0.75
of all trials were T trials. As a result, information-free guesses on such trials would
have been scored as correct recognitions 0.56 of the time, that is 0.752. Furthermore,
because p was equally likely to match s;, s, or s3, a random guess of serial position
would have been scored as a correct identification on 0.1875 of guessed trials, that is,
0.5625/3. A source error, then, would have occurred, on twice this number of trials,
0.375 of trials on which the participant made an utterly random, memory-free guess
that p matched one of the study items. Note that by definition, memory-free guesses
cannot be systematically linked to any property of the study stimuli.

A misidentification could have come also, not from random guessing, but from
one or more stimulus-related processes. With stimuli resembling those used in the
present experiments, Kahana and Sekuler (2002) showed that visual encoding or
study items was noisy, with each study being stored as a noisy exemplar. Suppose
that a subject’s judgments involved a process in which noisy (variable) exemplars
of each study item were compared to p. This is the key computation in a large
class of summed similarity models (Hintzman, 1988), including the one developed by
Kahana and Sekuler (2002). By comparing the summed similarity, a scalar value,
against, an appropriate criterion, the model generates“old-new” responses. However,
this scalar value, alone, cannot generate identification responses. To account for such
responses, we could augment the summed similarity framework by assuming that
a judgment of serial position is determined by positional information of the study
item whose memorial representation most closely matched p. Because of noise, on
some trials, then, the memory for a study item that physically did not not match p
might still more closely match p than does the memory for the study item that was
a physical match for p. Additionally, a participant’s memory for the matching study
item might be sufficient to have produced a correct identification, but the participant
misremembered the serial position in which that item had occurred.
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To evaluate these two possible causes of misidentifications, we determined whether
misidentifications might be explained by some spatial or temporal attribute of the
stimuli. The spatial attribute was the pairwise spatial similarity between exemplars
in the two-dimensional Euclidean space within which our stimuli were defined. The
likely potency of this variable was suggested by Kahana and Sekuler (2002)’s account
of false alarms in recognition judgments. For the temporal attribute, imagine that
there were some orderly, non-random forgetting of serial position information. One
form of non-random forgetting produces a ”locality constraint,” which promotes local
rather than global errors. In the task at hand, items that occupied serially adjacent
positions in a study sequence would be more likely to be confused with one another
than would be positions that more widely separated in a sequence (Lee & Estes,
1977; Page & Norris, 1998). In the case at hand, with partial loss of serial position
information, s; would be more likely to be misremembered as s, than as s3, and s3
would be more likely to be misremembered as s, than as s;. This account is mute
on errors arising from forgetting of s,’s serial position. Note that the duration of
each study item (750 msec), together with the 400 msec separating successive items,
should have been sufficient to minimize perceptual confusions between intervals, which
suggests that misidentifications arise from failure of memory rather than failures of
perception..

To compare competing stochastic and deterministic accounts of misidentifications,
each participant’s misidentifications were sorted into the cells of a 2 x 2 table. In
constructing the table, we considered only trials on which p actually matched the
first or last study item, s; or s3; the remaining trials, on which p matched s;, do not
lead to unequivocal predictions for misidentifications. The table’s rows corresponded
to two levels of a variable we call spatial similarity; the table’s columns correspond
to two levels of a variable we call temporal similarity. To generate the value of spatial
similarity, we used a metric stimulus space in Figure 1 to calculate the Euclidean dis-
tance in spatial frequency between (1) p and the misidentified study item, and (2) p
and the remaining study item that did not match p. If the first of these two distances
were the smaller, we categorized spatial similarity between p and misidentified item
as "high;” otherwise, we categorized spatial similarity as "low.” For temporal similar-
ity, we categorized misidentifications according to whether the error in identification
represented a shift of either one (high similarity) or two (low similarity) serial posi-
tions. For example, if s, were misidentified as matching p, when the actual matching
study item was s3, this error of one serial position was categorized as high temporal
similarity; if s; were misidentified as matching p, when the actual matching study
item was s3, the error of two serial positions was categorized as low temporal similar-
ity. A factorial cross of spatial and temporal variables produced four combinations of
spatiotemporal differences between p and the misidentified study item. Trials involv-
ing a match to s; were omitted from this analysis, because clear predictions involving
those trials could not be made within the theoretical framework used here.

Figure 18 shows the proportions of source errors falling into each of the four
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Figure 18. Proportion of misidentified items on T trials as a function of the spatial and
temporal similarity between correct and misidentified study stimuli. Panel A. Misidentifi-
cations in Experiment 1. Panel B. Misidentifications in Experiment 2. Two levels of spatial
difference are plotted on the x-axis. Each of them is plotted separately for stimulus pairs
that were temporally similar (black bars), and for pairs that were temporally dissimilar

(gray bars).

categories. In each panel, the horizontal-axis shows the two levels of spatial similarity;
black bars show results with high temporal similarity, and gray bars show results with
low temporal similarity. Note first that we can easily dismiss the hypothesis that
all misidentifications resulted from a completely stochastic process. Monte Carlo
simulation showed that a completely random process, which would produce correct
identification of serial position on just 0.1875 of all trials, would generate values
as extreme as the highest value in either panel of Figure 18 on fewer than one in
1,000,000 replications of the experiment. In fact, the distribution of misidentifications
is consistent with the alternative hypothesis, namely that both temporal and physical
similarity induced source errors, with physical similarity producing a larger effect than
temporal similarity. Moreover, the two panels in Figure 18 shows no evidence of an
interaction between the two variables, that is, the black and gray bars at low spatial
similarity differ by about as much as the corresponding bars at high spatial similarity
in both Experiments 1 and 2. Although the errors induced by perceptual similarity
were larger than those induced by temporal similarity in both experiments, the power
of temporal similarity seems stronger in Experiment 2. The one difference between
Experiment 1 and 2, the proportion of T trials, could explain this difference in results.
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The summed similarity of p and study items is an effective predictor of recogni-
tion memory of stimuli like those used here (Kahana & Sekuler, 2002; Nosofsky &
Kantner, 2005). Figure 19 illustrates in schematic form some key elements of NEMo,
the summed similarity model proposed by Kahana and Sekuler (2002). NEMo as-
sumes that that study items, s, s3, s3, are stored in memory as corresponding noisy
exemplars, mj, my, and mg, where exemplars’ subscripts signify the order in which
the stimuli were presented. NEMo computes pairwise similarities, 7y, 72, 73, between
p and the noisy exemplar of each study item. If the sum, X,, of these pairwise sim-
ilarities exceeds an (optimal) criterion, the model responds that p had been in the
study series. If ¥, fails to exceed the criterion value, the model responds that p
was not among the items in the study series. In NEMo’s computation, sets of study
and p items, together with random noise in the exemplar representations produce
a distribution of values of ¥,. To enhance the transparency of the following line of
argument and to avoid having to estimate noise parameters for this purpose, we will
put aside the effects of noise, treating exemplars as though they were noise free. In
addition, for the sake of generality we will ignore 3, a parameter that distinguishes
NEMo from other summed similarity models; § captures the similarity of each study
item to the others (Kahana & Sekuler, 2002; Nosofsky & Kantner, 2005). Neither of
these simplifying departures from NEMo is consequential for what follows.

By definition, on T trials one study item matched p. As a result of this maximum
similarity between one of the study items and p, X, tends to be higher on T trials
than on L trials. Note that this difference in Xy for T'and L trials will vary over trials,
depending upon the particular study items and p presented on each trial. However,
the mean difference in summed similarity between the two trial types will produce
greater than chance success in recognition. The match between p and one of the study
items has another consequence. On T trials one value of #; will always be constant,
at the upper limit of possible similarity values. On T trials only two values of 7; are
free to vary, whereas on L trials all three values vary. Therefore, the variance in X,
for T trials will tend to be smaller than the variance in ¥, for L trials. In order to
motivate the generation of ROC curves, we can cast these distributional relationships
into signal detection terms, describing the distribution of X, for T trials as the signal
distribution, and the distribution of ¥, for L trials as the noise distribution.

To examine the link between zROC slope and the distributions of X, values on
T and L trials, we calculated the summed similarity for each trial in our study. To
minimize assumptions needed for the calculation, we substituted pairwise Euclidean
spatial frequency differences between stimuli for the corresponding perceptual dif-
ferences specified by NEMo. Although these two variables, physical and perceptual
distance, are most likely related by an exponential transform (Kahana & Sekuler,
2002), any increasing monotonic relationship between the two variable leaves the ar-
gument unchanged. p-study summed distances were calculated separately for T trials
and for L trials in Experiment 3. The frequency distributions of X, for all stimulus
sets that appeared in Experiment 3 are plotted in Figure 20A. Note that the x-axis
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Figure 19. Schematic of model showing key stages that could lead to recognition and
identification responses. Samples of noise are added to visual representations of the study
stimuli (s;, s2, s3) producing a set of corresponding, noisy exemplars (mj, mg, m3z) which
are stored in memory. At the presentation of the probe stimulus, the similarity between
p and each memory representation is computed and stored as 7, 72, 73. These separate
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similarity measurements are combined into a summed similarity value, ¥,. Omitted from

this schematic representation are parameters that transform physical, stimulus distances
into perceptual similarity, and 8, which captures variation in the overall similarity of study
items to one another. So that the model can also identify the serial position of the study item
that matched p, one might add a max operator that returns the serial position associated
with the largest member of the similarity set, 11, 72, 3.

has been reversed so that the smallest value of summed distance lies to the right. Be-
cause summed similarity, ¥, and summed distance are inversely related, the reversal
of the normal x-axis direction represents increased summed similarity from left to
right, and also brings the visual format of Figure 20A’s distributions into conformity
with formats commonly used in signal detection theory. As expected, the mean value
of Xy for T trials tended to be larger than the comparable value for L trials; also,
the distribution of 3, for L trials had larger variance than did 3, for T trials. This
unequal variance in the empirical signal and noise distributions is consistent the fact
that recognition zZROC slopes were > 1.0 (Wickens, 2002).

To demonstrate that distributional differences in X, for T'and L trials would actu-
ally have the predicted effect on zZROC slope, we applied a signal detection analysis to
the recognition data that would have been produced by several different distributions
of £,. We simulated recognition for several different subsets of stimuli, which were
derived from the stimulus sets actually used in Experiment 3, the one experiment
in which recognition was measured directly. First, we calculated the value of X, for
all 400 L trials and for all 400 T trials that each subject saw. Figure 20A shows
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Figure 20. Panel A: Distributions of summed similarity values for all T trials (upper
sub-panel) and all L trials (lower sub-panel) used in Experiment 3 and in simulations of
recognition. L trials used both in Experiment 3 and in the first simulation are bracketed by
the rectangle with the thickest line. The two narrower rectangles bracket L trials used in
the second and third simulations. Panel B: Mean and SeM slopes of zZROCs calculated for
three sets of L trials; the variance of L trials’ summed similarity values varied systematically
among the three sets of trials. The rightmost point shows the mean and SeM zROC slope
simulated for all stimulus sets used in Experiment 3. The thick, medium, and thin bars each
correspond the simulations with large, medium, and small variance of summed similarity.
The thickness of lines in Panel B corresponds to those in Panel A. The standard deviation
of the T distribution is 1.68; the standard deviation for L trials was 2.1.

the distributions of ¥, for the two trial types, aggregated over all subjects. Note
that because stimulus sets were generated randomly from the pool of 25 items, each
subject had been tested with a partially unique set of T and L stimuli. From each
subject’s responses to his or her 400 T and 400 L trials, we generated a zZROC curve
and calculated its slope. Note that these 800 trials were the actual stimulus set used
in Experiment 3, the mean slope shown in the leftmost point in Figure 20B was 1.09,
a value identical to the corresponding value obtained in the actual experiment (see
rightmost point in Figure 17B).

Having confirmed that the variances of distributions of %, differed between the
complete set of T and L trials, we constituted two subsets of stimuli. For the first
subset we sought to reverse the relationship between the distributions’ variances,
while holding constant the difference between distributions’ means; we reasoned that
these new, modified distributions should produce zROC slopes below one. Starting
with each subject’s original stimulus set of 400 T and 400 L trials we carved out a
reduced-variance L distribution by selecting 60 L trials whose ¥y values were near
the mean value of £4. In addition, 60 T trials were randomly selected without regard
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to their value of £,. This maneuver reduced the variance for noise trials, leaving
the variance for signals trials unchanged, while also preserving the mean difference
between the two distributions. Altering the relative variances of £y for T and L
trials had the expected effect on zZROC slope: the relatively narrower distribution
of summed similarities values on L trials produced a simulated zZROC mean slope of
0.85, a value considerably below 1.0 (the rightmost value shown in Figure 20B).

Finally, we repeated the simulation with a somewhat larger subset of values sam-
pled from the original distribution of X, from L trials; the aim was to generate a
sample of stimuli in which the variance of ¥, for L trials was approximately the same
as that for T trials, which should produce zROC slopes near 1.0. We drew 250 L tri-
als and 250 T trials from the original sets of 400 items. L trials were drawn without
replacement from a region in vicinity of the mean for all L trials, but T trials for the
subset were drawn at random from the entire distribution of 400 trials. The result
was a ratio of variances between distributions that was intermediate to the ratios for
the 60-trial sets and for the complete, 400-trial sets. Again, in constructing these set
of stimuli, we held constant the mean distance between these two distributions of ¥,.
From each subject’s own responses in Experiment 3 to each of these stimulus lists,
we generated a zZROC recognition curve for that subject. The mean and standard
error of the zZROC slopes are shown by the middle point in Figure 20B. Note that as
expected, the mean zZROC slope here was intermediate to the mean slopes from the
other two simulated conditions, and was close to 1.0.

As mentioned earlier, the recognition zZROC slopes produced in our experiments
were all > 1, a result that is inconsistent with most previous reports (for example,
Ratcliff et al., 1992). In concert with expectations from signal detection theory (Egan,
1975; Wickens, 2002), the simulations represented in Figure 20A and B show that
our result arose from the differences in the variances of signal and noise distributions.
As we have demonstrated, the summed similarity values for L trials used trials in
Experiment 3 had larger variance than the values for T trials, a fact that signal
detection theory predicts, and our simulations confirm, would produce zROC slopes
>1.0.

It is difficult to specify how our results could be extended to more commonly used
memory materials including words. For one thing, it is difficult to know what metric
space is appropriate to describe such materials, which makes it hard to quantify their
similarity relations. However, our simulations do imply that one should not expect
any standard or canonical value of recognition zROC slope. Instead, they suggest
that zZROC slope will almost certainly depend upon variables such as the particular
stimulus values that constitute stimulus lists, the range and distribution of pairwise
similarities represented in the stimulus pool, the algorithm used to make up stimulus
lists from that pool, and the number of items in the study list. For example, with
factors constant, the larger the study list, the smaller the impact on T trial summed
similarity of the one study that matches p. This diminished impact will reduce the
difference in the variance in %, associated with T and L trials.
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Our ROC results clearly deviate from their counterparts in memory results for
verbal materials. As already discussed, we find zZROC slopes of 1.1-1.3 for recognition
and 0.8 to 0.9 for source identification, whereas studies using verbal materials report
slopes of 0.8 to 1.0 for recognition and approximately 1.0 for source identification.
For recognition zZROC slopes, it is likely that in our experiments lures are much more
similar to study items than would be the case with commonly used verbal stimuli.
For source recognition results, our stimuli and task differ in many ways from stimuli
and task used with verbal materials, which makes it impossible to know which might
actually be responsible for the difference in results. For example, our task used
short lists of study items, and defined source in terms of serial position that an item
occupied; analogous studies with verbal material have used considerably longer lists
of study items, and have mostly defined source in terms of the voice, male or female,
in the which the words were heard.

Source of misattribution errors Sensory researchers have long understood that
perceptual errors, such as illusions, can be valuable sources of insight into perception’s
normal operation (Eagleman, 2001). In the same way, from the very beginning of
systematic research on memory (Ebbinghaus, 1885/1913), errors and failures have
been extraordinarily useful in illuminating memory’s normal operation. Here, we
have focused on one particular kind of error —misattribution or source errors (Johnson
et al., 1993; Johnson, 1997).

The results in Figure 18 suggest that spatial and temporal similarity both influence
misidentifications of serial position, and that there separate effects are approximately
additive. How, though, might these influences operate? To understand how spatial
similarity might lead to source errors, consider a recent account of false alarms in
recognition judgments. As described before, Kahana and Sekuler (2002)’s NEMo
model assumes that three study items, sy, s, s3, are stored in memory as noisy
exemplars. When the probe, p, is presented, 7; .. .73, the set of similarities between
p and each of the noisy exemplars is computed. Again, subscripts signify the order
in which study stimuli were presented originally. NEMo describes each similarity
value as exponentially decreasing function of the spatial difference between p and the
corresponding values, m;, my, my. From the resulting similarity values, the summed
similarity, ¥,, is computed. In NEMo, a value of £, > k, where k is an optimal
criterion, constitutes evidence that at least one of the study items matched p, which
makes p seem familiar. Over trials, the probability of a recognition response (that is,
a yes response) corresponds to the proportion of trials on which ¥, > k.

To implement judgments of serial position, we propose that NEMo could be ex-
panded to allow the model to perform an additional operation on the set of pairwise
p-study item similarities it was already computing. We are not proposing here a
full, formal, quantitative account of this modification, and considerable new data
would be required to explore any such account. However, we do think it worthwhile
to sketch out the key elements of what we see as one plausible approach to serial
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position judgments that is compatible with a general, summed similarity approach.

In an expanded version of NEMo, each trial’s pairwise similarities would processed
with a max operator, which returns the index of the largest item in 71,7m2,73. In
the absence of error, this index would be the serial position of the study item that
most closely matches p. The subject bases the serial position identification upon
that returned index. Because of noise associated with each exemplar, there will be
trials on which the index returned by max will not correspond to the serial position
whose study item physically matched p, but would correspond instead to the serial
position of another study item. On such trials, the would model generate a source
error, misidentifying the serial position of the matching item’s similarity of p. The
probability of such errors will be some monotonically decreasing function of p. In
other words, study items that did not match p but were perceptually similar to it
would be more likely misidentified as the match than would study items that were
less similar to p. This is the pattern of results shown in Figure 18.

A different mechanism is required to motivate the other, temporal source of
misidentifications in our results. Drawing upon an account of temporal effects in
free recall (Howard & Kahana, 1999, 2002), we assume that the representation of
each noisy exemplar is tagged in memory with a temporal code. We assume further
that each item’s temporal tag can be degraded as a result of passage of time and/or
interference. If this degradation were partial rather than complete (Dodson, Holland,
& Shimamura, 1998), serially adjacent positions in a sequence would more likely be
confused with one another than would be positions more widely separated in a se-
quence. In the case at hand, with partial loss of serial position information, s; is more
likely misremembered as s, than as sz, and sz is more likely misremembered as s,
than as s;. This account is mute on errors involving forgetting of s,’s serial position.
Again, this is the pattern of results seen in Figure 18. We should note that this effect
resembles Dodson et al. (1998)’s demonstration that even when subjects misiden-
tify the source of information, they sometimes retain partial information about that
source.

We should note that the max operator with which NEMo might be expanded is
kin to max operators demonstrated in several other contexts. For example, Gawne
and Martin (2002) showed that some neurons in primate visual cortex behave in ac-
cordance with a max operator when two stimuli are present simultaneously in the
receptive fields of such neurons. Closer to our own use of a max operator is the
important role that such an operator plays in competitive queuing in planning and
producing serially-ordered behaviors (Bullock & Rhodes, 2003; Rhodes, Bullock, Ver-
wey, Averbeck, & Page, 2004; Agam, Bullock, & Sekuler, 2005). It is noteworthy that
competitive queuing often leads to transposition errors, a counterpart to the temporal
order transpositions demonstrated in our experiments. Although other, alternative
processes may ultimately prove to be responsible for serial position identification, we
believe that a max operator could quite plausibly participate in that process.

Across the three experiments reported here, zZROC curves generated for recog-
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nition performance had slopes >1. This was true in Experiments 1 and 2, where
recognition performance was estimated from source identification judgments, as well
as in Experiment 3, where recognition performance was measured directly, that is,
from recognition judgments. Analyzing the distributional characteristics of T and
L trials we demonstrated that zROC slopes were well accommodated by integrat-
ing a summed similarity computation for episodic recognition and a signal detection
framework for decision making.
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